中国农业科学 ›› 2018, Vol. 51 ›› Issue (23): 4575-4590.doi: 10.3864/j.issn.0578-1752.2018.23.015
• 畜牧·兽医·资源昆虫 • 上一篇
郭睿(),陈华枝(
),熊翠玲,郑燕珍,付中民,徐国钧,杜宇,王海朋,耿四海,周丁丁,刘思亚,陈大福(
)
收稿日期:
2018-07-16
接受日期:
2018-09-10
出版日期:
2018-12-01
发布日期:
2018-12-12
基金资助:
GUO Rui(),CHEN HuaZhi(
),XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,XU GuoJun,DU Yu,WANG HaiPeng,GENG SiHai,ZHOU DingDing,LIU SiYa,CHEN DaFu(
)
Received:
2018-07-16
Accepted:
2018-09-10
Online:
2018-12-01
Published:
2018-12-12
摘要:
【目的】环状RNA(circular RNA,circRNA)在可变剪接、转录调控和来源基因的表达调控等方面具有重要功能。本研究旨在探究意大利蜜蜂(Apis mellifera ligustica,简称意蜂)工蜂中肠发育过程中circRNA的表达谱及其发育过程中的差异表达circRNA(differentially expressed circRNA,DEcircRNA),进而在转录组水平探究DEcircRNA在中肠发育中的作用。【方法】基于前期获得的意蜂7和10日龄工蜂中肠样品(Am7和Am10)的全转录组数据,利用find_circ软件从质控后的数据中预测circRNA。采用RPM算法归一化处理得到circRNA的表达量。利用DEGseq软件对circRNA进行差异分析,按照差异倍数(fold change)≥2、P<0.05及错误发现率(false discovery rate,FDR)<0.05条件筛选DEcircRNA。通过BLAST比对GO和KEGG数据库,对DEcircRNA的来源基因进行功能和代谢通路注释。利用TargetFinder软件预测DEcircRNA-miRNA及DEcircRNA-miRNA-mRNA调控网络,通过Cytoscape v.3.2.1软件对调控网络进行可视化。通过实时荧光定量PCR(RT-qPCR)验证测序数据的可靠性。【结果】意蜂中肠各样品比对上参考基因组的短序列读段数平均为19 616 356条。Am7与Am10的组内Pearson相关系数均≥0.950。共预测出256个DEcircRNA,包括105个上调circRNA和151个下调circRNA。Novel_circ_009675和novel_circ_013879分别在Am7和Am10中高量表达。DEcircRNA的来源基因可注释到包括结合、单组织进程及细胞进程在内的32个GO条目,其中分别有35、35和7个来源基因注释到催化活性、代谢进程和应激反应。上述来源基因还可注释到35条KEGG代谢通路,其中分别有5、5和4个来源基因注释到Hippo信号通路、内吞作用和吞噬体;进一步分析发现分别有1、2和2个来源基因注释到磷酸肌醇代谢、淀粉和蔗糖代谢和半乳糖代谢等物质代谢通路,5、4、3、1和1个来源基因注释到内吞作用、吞噬体、溶酶体、泛素介导的蛋白水解和MAPK信号通路等免疫通路。上述结果表明相应的DEcircRNA广泛参与意蜂工蜂中肠的生长发育、新陈代谢和免疫防御。DEcircRNA-miRNA调控网络分析结果显示,141个DEcircRNA可靶向结合107个miRNA,其中多数仅能结合1—2个miRNA,但novel_circ_011577和novel_circ_010719结合的靶miRNA数可达32和28个;此外,mir-136-y、ame-miR-6001-3p及mir-136-y结合的circRNA数最多,分别为15、14和14个,表明相应的DEcircRNA可作为竞争性内源RNA在意蜂中肠发育过程发挥作用。进一步构建DEcircRNAs-ame-miR-6001-3p-mRNA调控网络,分析结果显示14个DEcircRNA可共同靶向结合ame-miR-6001-3p,表明它们可能通过调控ame-miR-6001-3p对意蜂中肠干细胞的分裂和分化进行间接调控。随机选取6个DEcircRNA进行RT-qPCR验证,结果显示5个DEcircRNA的表达量变化趋势与测序结果一致,证实了本研究测序结果的可靠性。【结论】通过对意蜂工蜂中肠发育过程中的DEcircRNA深入分析,提供了circRNA在意蜂工蜂中肠发育过程中的表达谱和差异表达信息,揭示了DEcircRNA在中肠发育过程中的作用,为中肠发育相关的关键circRNA的筛选和功能研究打下了基础。
郭睿,陈华枝,熊翠玲,郑燕珍,付中民,徐国钧,杜宇,王海朋,耿四海,周丁丁,刘思亚,陈大福. 意大利蜜蜂工蜂中肠发育过程中的差异表达环状RNA及其调控网络分析[J]. 中国农业科学, 2018, 51(23): 4575-4590.
GUO Rui,CHEN HuaZhi,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,XU GuoJun,DU Yu,WANG HaiPeng,GENG SiHai,ZHOU DingDing,LIU SiYa,CHEN DaFu. Analysis of Differentially Expressed Circular RNAs and Their Regulation Networks During the Developmental Process of Apis mellifera ligustica Worker’s Midgut[J]. Scientia Agricultura Sinica, 2018, 51(23): 4575-4590.
表1
RT-qPCR验证的引物信息"
引物名称Primer name | 引物序列Primer sequence |
---|---|
Novel_circ_005547-F | TCTGCTACTCAAATGGAGGG |
Novel_circ_005547-R | CCCACTGTCTCTCTTCTAAGGA |
Novel_circ_014049-F | GGAAGGAAGGAAGTAGCGA |
Novel_circ_014049-R | CACGAACACCACCCAATA |
Novel_circ_002507-F | ATTTCCTTGGGCATAGCC |
Novel_circ_002507-R | CTCGGTCAAACCATACACC |
Novel_circ_012440-F | AGTCTGTTCGGTAATCCCG |
Novel_circ_012440-R | CTCACCTGATACTTCACCTTTG |
Novel_circ_001915-F | CATCATCTCCGAAACCGA |
Novel_circ_001915-R | TTGAGGTGGCTGACTTGA |
Actin-F | CACTCCTGCTATGTATGTCGC |
Actin-R | GGCAAAGCGTATCCTTCA |
表2
未比对上核糖体数据库的有效读段比对参考基因组的信息统计"
样品 Sample | 短序列读段 Anchors reads | 比对上的短序列读段 Mapped anchors reads | 比对率 Mapping ratio (%) |
---|---|---|---|
Am7-1 | 236400908 | 19006601 | 8.04 |
Am7-2 | 168420472 | 19873468 | 11.80 |
Am7-3 | 136779122 | 17502228 | 12.80 |
Am10-1 | 195020440 | 22441139 | 11.51 |
Am10-2 | 184091234 | 21109367 | 11.47 |
Am10-3 | 168790774 | 17765330 | 10.53 |
表3
Am7样品中表达量最高的前10位circRNA"
CircRNA名称 Name of circRNAs | RPM值 RPM value | 来源基因ID ID of source gene | 长度 Length (bp) | 环化类型 Type of circularization |
---|---|---|---|---|
novel_circ_003183 | 45581.85 | 410805 | 552 | annot_exons |
novel_circ_010717 | 33244.11 | 413053 | 956 | annot_exons |
novel_circ_012530 | 21253.62 | 725393 | 1190 | one_exon |
novel_circ_000476 | 15898.09 | 552294 | 1742 | annot_exons |
novel_circ_011750 | 14352.44 | 410379 | 613 | antisense |
novel_circ_011749 | 14094.35 | 410379 | 613 | antisense |
novel_circ_000896 | 12421 | 100576586 | 1362 | annot_exons |
novel_circ_006484 | 9348.5 | 413332 | 419 | annot_exons |
novel_circ_009675 | 7112.647 | 408996 | 404 | annot_exons |
novel_circ_012115 | 6698.064 | 724592 | 727 | annot_exons |
表4
Am10中表达量最高的前10位circRNA"
CircRNA名称 Name of circRNAs | RPM值 RPM value | 来源基因ID ID of source gene | 长度 Length (bp) | 环化类型 Type of circularization |
---|---|---|---|---|
novel_circ_003183 | 50507.89 | 410805 | 552 | annot_exons |
novel_circ_010717 | 39732.13 | 413053 | 956 | annot_exons |
novel_circ_012530 | 23025.9 | 725393 | 1190 | one_exon |
novel_circ_000896 | 17755.41 | 100576586 | 1362 | annot_exons |
novel_circ_000476 | 17621.29 | 552294 | 1742 | annot_exons |
novel_circ_011750 | 13241.09 | 410379 | 613 | antisense |
novel_circ_011749 | 12729.28 | 410379 | 613 | antisense |
novel_circ_006484 | 9038.38 | 413332 | 419 | annot_exons |
novel_circ_013879 | 7982.833 | 408521 | 1219 | exon_intron |
novel_circ_012115 | 7316.428 | 724592 | 727 | annot_exons |
[1] |
PARK D, JUNG J W, CHOI B S, JAYAKODI M, LEE J, LIM J, YU Y, CHOI Y S, LEE M L, PARK Y, CHOI I Y, YANG T J, EDWARDS O R, NAH G . Uncovering the novel characteristics of Asian honey bee, Apis cerana, by whole genome sequencing. BMC Genomics, 2015,16:1.
doi: 10.1186/1471-2164-16-1 pmid: 4326529 |
[2] | National Research Council. Status of Pollinators in North America. The National Academies Press, 2006. |
[3] | 周冰峰 . 蜜蜂饲养管理学. 厦门: 厦门大学出版社, 2002. |
ZHOU B F. Feeding and Management of Honeybee. Xiamen: Xiamen University Publishing Company, 2002. ( in Chinese) | |
[4] |
MENG S J, ZHOU H C, FENG Z Y, XU Z H, TANG Y, LI P Y, WU M H . CircRNA: Functions and properties of a novel potential biomarker for cancer. Molecular Cancer, 2017,16:94.
doi: 10.1186/s12943-017-0663-2 pmid: 28535767 |
[5] |
HE J, XIE Q C, XU H L, LI J T, LI Y S . Circular RNAs and cancer. Cancer Letters, 2017,396:138-144.
doi: 10.1016/j.canlet.2017.03.027 |
[6] |
QU S B, YANG X S, LI X L, WANG J L, GAO Y, SHANG R Z, SUN W, DOU K F, LI H M . Circular RNA: A new star of noncoding RNAs. Cancer Letters, 2015,365(2):141-148.
doi: 10.1016/j.canlet.2015.06.003 pmid: 26052092 |
[7] |
ASHWAL-FLUSS R, MEYER M, PAMUDURTI N R, IVANOV A, BARTOK O, HANAN M, EVANTAL N, MEMCZAK S, RAJEWSKY N, KADENER S . CircRNA biogenesis competes with pre-mRNA splicing. Molecular Cell, 2014,56(1):55-66.
doi: 10.1016/j.molcel.2014.08.019 |
[8] |
KOS A, DIJKEMA R, ARNBERG A C, VAN DER MEIDE P H, SCHELLEKENS H . The hepatitis delta (delta) virus possesses a circular RNA. Nature, 1986,323(6088):558-560.
doi: 10.1038/323558a0 |
[9] |
PERKEL J M . Assume nothing: The tale of circular RNA. Biotechniques, 2013,55(2):55-57.
doi: 10.2144/000114061 pmid: 23931592 |
[10] |
JECK W R, SORRENTINO J A, WANG K, SLEVIN M K, BURD C E, LIU J, MARZLUFF W F, SHARPLESS N E . Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 2013,19(2):141-157.
doi: 10.1261/rna.035667.112 |
[11] | MEMCZAK S, JENS M, ELEFSINIOTI A, TORTI F, KRUEGER J, RYBAK A, MAIER L, MACKOWIAK S D, GREGERSEN L H, MUNSCHAUER M, LOEWER A, ZIEBOLD U, LANDTHALER M, KOCKS C, LE NOBLE F, RAJEWSKY N . Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2014,495(7441):333-338. |
[12] |
SALZMAN J, CHEN R E, OLSEN M N, WANG P L, BROWN P O . Cell-type specific features of circular RNA expression. PLoS Genetics, 2013,9(9):e1003777.
doi: 10.1371/journal.pgen.1003777 pmid: 24039610 |
[13] |
SHEN Y D, GUO X W, WANG W M . Identification and characterization of circular RNAs in zebrafish. FEBS Letters, 2017,591(1):213-220.
doi: 10.1002/1873-3468.12500 pmid: 27878987 |
[14] |
LU T T, CUI L L, ZHOU Y, ZHU C R, FAN D L, GONG H, ZHAO Q, ZHOU C C, ZHAO Y, LU D F, LUO J H, WANG Y C, TIAN Q L, FENG Q, HUANG T, HAN B . Transcriptome-wide investigation of circular RNAs in rice. RNA, 2015,21(12):2076-2087.
doi: 10.1261/rna.052282.115 pmid: 26464523 |
[15] |
DANAN M, SCHWARTZ S, EDELHEIT S, SOREK R . Transcriptome- wide discovery of circular RNAs in Archaea. Nucleic Acids Research, 2012,40(7):3131-3142.
doi: 10.1093/nar/gkr1009 pmid: 3326292962175459219598570825 |
[16] | GUO R, CHEN D F, CHEN H Z, FU Z M, XIONG C L, HOU C S, ZHENG Y Z, GUO Y L, WANG H P, DU Y, DIAO Q Y . Systematic investigation of circular RNAs in Ascosphaera apis, a fungal pathogen of honeybee larvae. Gene, 2018, 678: DOI: 10.1016/j.gene.2018.07.076. |
[17] |
WESTHOLM J O, MIURA P, OLSON S, SHENKER S, JOSEPH B, SANFILIPPO P, CELNIKER S E, GRAVELEY B R, LAI E C . Genome-wide analysis of Drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Reports, 2014,9(5):1966-1980.
doi: 10.1016/j.celrep.2014.10.062 pmid: 25544350 |
[18] |
GAN H, FENG T, WU Y, LIU C, XIA Q, CHENG T . Identification of circular RNA in the Bombyx mori silk gland. Insect Biochemistry and Molecular Biology, 2017,89:97-106.
doi: 10.1016/j.ibmb.2017.09.003 pmid: 28918159 |
[19] |
CHEN X, SHI W, CHEN C . Differential circular RNAs expression in ovary during oviposition in honeybees. Genomics, 2018: doi. org/10.1016/j.ygeno.2018.03.015.
doi: 10.1016/j.ygeno.2018.03.015 pmid: 29709513 |
[20] |
DU W W, YANG W, LIU E, YANG Z, DHALIWAL P, YANG B B . Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Research, 2016,44(6):2846-2858.
doi: 10.1093/nar/gkw027 pmid: 26861625 |
[21] |
CHENG X, ZHANG L, ZHANG K, ZHANG G, HU Y, SUN X, ZHAO C, LI H, LI Y M, ZHAO J . Circular RNA VMA21 protects against intervertebral disc degeneration through targeting miR-200c and X linked inhibitor-of-apoptosis protein. Annals of the Rheumatic Diseases, 2018,77(5):770-779.
doi: 10.1136/annrheumdis-2017-212056 pmid: 29343508 |
[22] |
ZHENG Q P, BAO C Y, GUO W J, LI S Y, CHEN J, CHEN B, LUO Y T, LYU D B, LI Y, SHI G H, LIANG L H, GU J R, HE X H, HUANG S L . Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nature Communication, 2016,7:11215.
doi: 10.1038/ncomms11215 pmid: 4823868 |
[23] | 李兆英 . 意大利蜜蜂胚后发育过程中中肠上皮组织细胞的更替. 昆虫学报, 2011,54(10):1127-1132. |
LI Z Y . Replacement of midgut epithelium in Apis mellifera ligustica(Hymenoptera: Apidae) during postembryonic development. Acta Entomologica Sinica, 2011,54(10):1127-1132. (in Chinese) | |
[24] | 郭睿, 解彦玲, 熊翠玲, 尹伟轩, 郑燕珍, 付中明, 陈大福 . 意大利蜜蜂4、5和6日龄幼虫肠道发育过程中差异表达基因的趋势分析. 上海交通大学学报, 2018,36(4):14-21, 29. |
GUO R, XIE Y L, XIONG C L, YI W X, ZHENG Y Z, FU Z M, CHEN D F . Trend analysis for differentially expressed genes in developmental process of 4-, 5- and 6-day-old larval guts of Apis mellifera ligustica. Journal of Shanghai Jiaotong University (Agricultural Science), 2018,36(4):14-21, 29. (in Chinese) | |
[25] | 郭睿, 耿四海, 熊翠玲, 郑燕珍, 付中民, 王海朋, 杜宇, 童新宇, 赵红霞, 陈大福 . 意大利蜜蜂工蜂中肠发育过程中长链非编码RNA的差异表达分析. 中国农业科学, 2018,51(18):3600-3613. |
GUO R, GENG S H, XIONG C L, ZHENG Y Z, FU Z M, WANG H P, DU Y, TONG X Y, ZHAO H X, CHEN D F . Differential expression analysis of long non-coding RNAs during the developmental process of Apis mellifera ligustica worker’s midgut. Scientia Agricultura Sinica, 2018,51(18):3600-3613. (in Chinese) | |
[26] |
KIM D, PERTEA G, TRAPNELL C, PIMENTEL H, KELLEY R, SALZBERG S L . TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 2013,14(4):R36.
doi: 10.1186/gb-2013-14-4-r36 pmid: 4053844 |
[27] | The Honeybee Genome Sequencing Consortium. Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 2006,443(7114):931-949. |
[28] |
WANG L K, FENG Z X, WANG X W, WANG X, ZHANG X G . DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics, 2010,26(1):136-138.
doi: 10.1093/bioinformatics/btp612 |
[29] |
LI Z Y, HUANG C, BAO C, CHEN L, LIN M, WANG X L, ZHONG G L, YU B, HU W C, DAI L M, ZHU P F, CHANG Z X, WU Q F, ZHAO Y, JIA Y, XU P, LIU H J, SHAN G . Exon-intron circular RNAs regulate transcription in the nucleus. Nature Structural & Molecular Biology, 2015,22(3):256-264.
doi: 10.1038/nsmb.2959 pmid: 25664725 |
[30] |
LANGMEAD B, TRAPNELL C, POP M, SALZBERG S L . Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 2009,10(3):R25.
doi: 10.1186/gb-2009-10-3-r25 pmid: 2690996 |
[31] | ALLEN E, XIE Z, GUSTAFSON A M, CARRINGTON J C . MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 2005,121(2):207-221. |
[32] |
SMOOT M E, ONO K, RUSCHEINSKI J, WANG P L, IDEKER T . Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics, 2011,27(3):431-432.
doi: 10.1093/bioinformatics/btq675 pmid: 21149340 |
[33] |
HU X L, ZHU M, ZHANG X, LIU B, LIANG Z, HUANG L X, XU J, YU L, LI K, ZAR M S, XUE R Y, CAO G L, GONG C L . Identification and characterization of circular RNAs in the silkworm midgut following Bombyx mori cytoplasmic polyhedrosis virus infection. RNA Biology, 2018,15(2):292-301.
doi: 10.1080/15476286.2017.1411461 pmid: 29268657 |
[34] |
ZHANG C L, WU H, WANG Y H, ZHU S Q, LIU J Q, FANG X T, CHEN H . Circular RNA of cattle casein genes are highly expressed in bovine mammary gland. Journal of Dairy Science, 2016,99(6):4750-4760.
doi: 10.3168/jds.2015-10381 pmid: 27040791 |
[35] |
HUANG M J, SHEN Y F, MAO H G, CHEN L X, CHEN J C, GUO X L, XU N G . Circular RNA expression profiles in the porcine liver of two distinct phenotype pig breeds. Asian-Australasian Journal of Animal Sciences, 2018,31(6):812-819.
doi: 10.5713/ajas.17.0651 pmid: 29268579 |
[36] |
ZHANG X H, YAN Y M, LEI X Y, LI A J, ZHANG H M, DAI Z K, LI X J, CHEN W G, LIN W C, CHEN F, MA J Y, XIE Q M . Circular RNA alterations are involved in resistance to avian leukosis virus subgroup-J-induced tumor formation in chickens. Oncotarget, 2017,8(21):34961-34970.
doi: 10.18632/oncotarget.16442 pmid: 5471026 |
[37] |
FAN X Y, ZHANG X N, WU X L, GUO H S, HU Y Q, TANG F C, HUANG Y Y . Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biology, 2015,16:148.
doi: 10.1186/s13059-015-0706-1 pmid: 26201400 |
[38] |
HE L B, ZHANG A D, XIONG L, LI Y M, HUANG R, LIAO L J, ZHU Z Y, WANG Y P . Deep circular RNA sequencing provides insights into the mechanism underlying grass carp reovirus infection. International Journal of Molecular Sciences, 2017,18(9):1977.
doi: 10.3390/ijms18091977 pmid: 28906455 |
[39] |
DARBANI B, NOEPARVAR S, BORG S . Identification of circular RNAs from the parental genes involved in multiple aspects of cellular metabolism in barley. Frontiers in Plant Sciences, 2016,7:776.
doi: 10.3389/fpls.2016.00776 pmid: 27375638 |
[40] |
SUN X Y, WANG L, DING J C, WANG Y R, WANG J S, ZHANG X Y, CHE Y L, LIU Z W, ZHANG X R, YE J Z, WANG J, SABLOK G, DENG Z P, ZHAO H W . Integrative analysis of Arabidopsis thaliana transcriptomics reveals intuitive splicing mechanism for circular RNA. FEBS Letters, 2016,590(20):3510-3516.
doi: 10.1002/1873-3468.12440 pmid: 27685607 |
[41] | 刘骏武, 陈玲玲 . 线虫环状RNA分析. 计算生物学, 2015,5(2):17-28. |
LIU J W, CHEN L L . Analysis of circular RNA in Caenorhabditis elegans. Hans Journal of Computational Biology, 2015,5(2):17-28. (in Chinese) | |
[42] |
刘春蕾, 胥保华, 刘振国, 王颖, 王红芳 . 不同越冬饲料对蜜蜂中肠消化酶活性、组织发育状态以及抗氧化酶基因表达的影响. 动物营养学报, 2017,29(4):1183-1190.
doi: 10.3969/j.issn.1006-267x.2017.04.013 |
LIU C L, XU B H, LIU Z G, WANG Y, WANG H F . Effects of different overwintering feeds on midgut digestive enzyme activities, tissue development status and antioxidant enzyme gene expression of honeybees. Chinese Journal of Animal Nutrition, 2017,29(4):1183-1190. (in Chinese)
doi: 10.3969/j.issn.1006-267x.2017.04.013 |
|
[43] | 刘彩珍. 中华蜜蜂( Apis cerana cerana Fabricius)中肠消化酶活性的探讨[D]. 福州: 福建农林大学, 2001. |
LIU C Z . Inquisition of the digestive enzyme activity in the midgut of the honeybee (Apis cerana cerana Fab.)[D]. Fuzhou: Fujian Agriculture and Forestry University, 2001. ( in Chinese) | |
[44] |
HALDER G, JOHNSON R L . Hippo signaling: growth control and beyond. Development, 2011,138(1):9-22.
doi: 10.1242/dev.045500 pmid: 21138973 |
[45] |
CAMARGO F D, GOKHALE S, JOHNNIDIS J B, FU D, BELL G W, JAENISCH R, BRUMMELKAMP T R . YAP1 increases organ size and expands undifferentiated progenitor cells. Current Biology, 2007,17(23):2054-2060.
doi: 10.1016/j.cub.2007.10.039 pmid: 17980593 |
[46] |
FEVR T, ROBINE S, LOUVARD D, HUELSKEN J . Wnt/beta- catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Molecular and Cellular Biology, 2007,27(21):7551-7559.
doi: 10.1128/MCB.01034-07 pmid: 17785439 |
[47] |
孙晓阳, 王雁玲 . Wnt 信号通路与哺乳动物生殖. 生物化学与生物物理进展, 2003,30(2):180-184.
doi: 10.3321/j.issn:1000-3282.2003.02.004 |
SUN X Y, WANG Y L . Wnt signaling pathways in mammalian reproduction. Progress in Biochemistry and Biophysics, 2003,30(2):180-184. (in Chinese)
doi: 10.3321/j.issn:1000-3282.2003.02.004 |
|
[48] |
BARRY E R, CAMARGO F D . The Hippo superhighway: signaling crossroads converging on the Hippo/Yap pathway in stem cells and development. Current Opinion in Cell Biology, 2013,25(2):247-253.
doi: 10.1016/j.ceb.2012.12.006 pmid: 23312716 |
[49] |
ARONSTEIN K A, MURRAY K D . Chalkbrood disease in honey bees. Journal of Invertebrate Pathology. 2010,103(Suppl. 1):S20-S29.
doi: 10.1016/j.jip.2009.06.018 pmid: 19909969 |
[50] |
SARAAV I, SINGH S, SHARMA S . Outcome of mycobacterium tuberculosis and Toll-like receptor interaction: immune response or immune evasion? Immunology and Cell Biology, 2014,92(9):741-746.
doi: 10.1038/icb.2014.52 pmid: 24983458 |
[51] |
SALMENA L, POLISENO L, TAY Y, KATS L, PANDOLFI P P . A ceRNA hypothesis: The Rosetta stone of a hidden RNA language? Cell, 2011,146(3):353-358.
doi: 10.1016/j.cell.2011.07.014 pmid: 3235919 |
[52] | DENG Y Y, ZHANG W P, SHE J Q, ZHANG L S, CHEN T, ZHOU J, YUAN Z Y . Circular RNA related to PPARγ function as ceRNA of microRNA in human acute myocardial infarction. Journal of the American College of Cardiology, 2016,68(16):C51-C52. |
[53] |
XU X W, ZHENG B A, HU Z M, QIAN Z Y, HUANG C J, LIU X Q, WU W D . Circular RNA hsa_circ_000984 promotes colon cancer growth and metastasis by sponging miR-106b. Oncotarget, 2017,8(53):91674-91683.
doi: 10.18632/oncotarget.21748 pmid: 29207676 |
[54] | LIU Q, ZHANG X, HU X Q, DAI L H, FU X, ZHANG J Y, AO Y F . Circular RNA related to the chondrocyte ECM regulates MMP13 expression by functioning as a mir-136 ‘Sponge’ in human cartilage degradation. Scientific Reports, 2016,6:22572. |
[55] |
WU Y, PARTHASARATHY R, BAI H, PALLI S R . Mechanisms of midgut remodeling: juvenile hormone analog methoprene blocks midgut metamorphosis by modulating ecdysone action. Mechanisms of Development, 2006,123(7):530-547.
doi: 10.1016/j.mod.2006.05.005 |
[56] |
MELLO T R, ALEIXO A C, PINHEIRO D G, NUNES F M, BITONDI M M, HARTFELDER K, BARCHUK A R, SIMOES Z L . Developmental regulation of ecdysone receptor (EcR) and EcR-controlled gene expression during pharate-adult development of honeybees (Apis mellifera). Frontiers in Genetics, 2014,5:445.
doi: 10.3389/fgene.2014.00445 pmid: 25566327 |
[1] | 吴艳,张昊,梁振华,潘爱銮,申杰,蒲跃进,黄涛,皮劲松,杜金平. circ-13267通过let-7-19/ERBB4通路调控蛋鸭卵泡颗粒细胞凋亡[J]. 中国农业科学, 2022, 55(8): 1657-1666. |
[2] | 李世佳,吕紫敬,赵锦. 枣R2R3-MYB亚家族基因鉴定及其在果实发育中的表达分析[J]. 中国农业科学, 2022, 55(6): 1199-1212. |
[3] | 由玉婉,张雨,孙嘉毅,张蔚. ‘月月粉’月季NAC家族全基因组鉴定及皮刺发育相关成员的筛选[J]. 中国农业科学, 2022, 55(24): 4895-4911. |
[4] | 马玉峰,周忠雄,李雨桐,高雪琴,乔亚丽,张文斌,颉建明,胡琳莉,郁继华. 氮素水平及形态对娃娃菜根系特征及生理指标的影响[J]. 中国农业科学, 2022, 55(2): 378-389. |
[5] | 王荣华,孟丽峰,冯毛,房宇,魏俏红,马贝贝,钟未来,李建科. 蜂王浆高产蜜蜂与意大利蜜蜂哺育蜂唾液腺蛋白质组分析[J]. 中国农业科学, 2022, 55(13): 2667-2684. |
[6] | 冯睿蓉,付中民,杜宇,张文德,范小雪,王海朋,万洁琦,周紫彧,康育欣,陈大福,郭睿,史培颖. 中华蜜蜂幼虫肠道中微小RNA的鉴定及分析[J]. 中国农业科学, 2022, 55(1): 208-218. |
[7] | 张承启,廖露露,齐永霞,丁克坚,陈莉. 禾谷镰孢核孔蛋白基因FgNup42的功能分析[J]. 中国农业科学, 2021, 54(9): 1894-1903. |
[8] | 李晓颍, 武军凯, 王海静, 李梦园, 申艳红, 刘建珍, 张立彬. 欧李果实发育期内挥发性成分变化特征[J]. 中国农业科学, 2021, 54(9): 1964-1980. |
[9] | 杜宇,范小雪,蒋海宾,王杰,冯睿蓉,张文德,余岢骏,隆琦,蔡宗兵,熊翠玲,郑燕珍,陈大福,付中民,徐国钧,郭睿. 微小RNA介导意大利蜜蜂工蜂对东方蜜蜂微孢子虫的跨界调控[J]. 中国农业科学, 2021, 54(8): 1805-1820. |
[10] | 陈茜,刘英杰,董勇浩,刘金燕,李炜,徐蓬军,臧云,任广伟. 黄瓜花叶病毒侵染烟草对烟蚜生长发育、取食和选择行为的影响[J]. 中国农业科学, 2021, 54(8): 1673-1683. |
[11] | 侯彤瑜,郝婷丽,王海江,张泽,吕新. 棉花生长发育模型及其在我国的研究和应用进展[J]. 中国农业科学, 2021, 54(6): 1112-1126. |
[12] | 宣旭娴,盛子璐,解振强,黄雨晴,巩培杰,张川,郑婷,王晨,房经贵. vvi-miR172s及其靶基因响应赤霉素调控葡萄果实发育的作用分析[J]. 中国农业科学, 2021, 54(6): 1199-1217. |
[13] | 王文然,解振强,诸葛雅贤,白云赫,管乐,吴伟民,张培安,郑婷,房经贵,王晨. GA3介导miR171s及其靶基因VvSCLs调控葡萄种子发育的作用分析[J]. 中国农业科学, 2021, 54(2): 357-369. |
[14] | 李昕芫, 娄金秀, 刘清源, 胡健, 张英俊. 中国东北和华北地区紫花苜蓿根瘤菌遗传多样性研究[J]. 中国农业科学, 2021, 54(16): 3393-3405. |
[15] | 许子怡,程行,沈奇,赵亚男,汤佳玉,刘喜. 水稻黄绿叶突变体ygl3的鉴定与基因功能分析[J]. 中国农业科学, 2021, 54(15): 3149-3157. |
|