[1] Christensen T H. Cadmium soil sorption at low concentrations: V. Evidence of competition by other heavy metals. Water Air & Soil Pollution, 1987, 34(3): 293-303.
[2] 李婧, 周艳文, 陈森, 高小杰. 我国土壤Cd污染现状、危害及其治理方法综述. 安徽农学通报, 2015, 21(24):104-107.
LI J, Zhou y w, chen S, GAO X J. Actualities, damage and management of soil cadmium pollution in china. Anhui Agricultural Science Bulletin, 2015, 21(24):104-107. (in Chinese)
[3] Moreno-Caselles J, Moral R, Pérez-Espinosa A, Pérez-Murcia M D. Cadmium accumulation and distribution in cucumber plant. Journal of Plant Nutrition, 2000, 23(23): 243-250.
[4] 和莉莉, 李冬梅, 吴钢. 我国城市土壤重金属污染研究现状和展望. 土壤通报, 2008, 39(5): 1210-1216.
HE L L, LI D M, WU G. Current status and prospect of heavy metal pollution in urban soils of China. Chinese Journal of Soil Science, 2008, 39(5): 1210-1216. (in Chinese)
[5] Gong W Q, Pan G X. Issues of grain Cd uptake and the potential health risk of rice production sector of China. Science and Technology Review, 2006, 24(5): 43-48.
[6] 刘明浩, 陈光辉, 王悦. 植物耐镉机制研究进展. 作物研究, 2015(1): 101-105.
LIU M H, CHEN G H, WANG Y. Research progress on mechanisms of plant resistance to cadmium. Crop Research, 2015(1): 101-105. (in Chinese)
[7] Weber M, Deinlein U, Fischer S, ROGOWSKI M, GEIMER S,TENHAKEN R, CLEMENS S. A mutation in the Arabidopsis thaliana cell wall biosynthesis gene pectin methylesterase 3 as well as its ab-errant expression cause hypersensitivity specifically to Zn. The Plant Journal, 2013, 76(1): 151-164.
[8] Bhuiyan M S U, Min S R, Jeong W J, SULTANA S, CHOI K W, LEE Y, LIU J R. Overexpression of AtATM3 in Brassica juncea confers enhanced heavy metal tolerance and accumulation. Plant Cell, Tissue and Organ Culture, 2011, 107(1): 69-77.
[9] Shigaki T, Sreevidya C, Hirschi K D. Analysis of the Ca2 + domain in the Arabidopsis H+/Ca2+ antiporters CAX1 and CAX3. Plant Molecular Biology, 2002, 50(3): 475-483.
[10] Arazi T, Sunkar R, Kaplan B, FROMM H. A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. The Plant Journal, 1999, 20(2): 171-182.
[11] Vroemen C W, Mordhorst A P, Albrecht C, KWAAITAAL M A, VRIES S C.The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. The Plant Cell, 2003, 15: 1563-1577.
[12] Kim Y S, Kim S G, Park J E, PARK H Y, LIM M H, CHUA N H, PARK C M. A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. The Plant Cell, 2006, 18: 3132-3144.
[13] Hao Y J, Wei W, Song Q X, CHEN H W, ZHANG Y Q, WANG F, ZOU H F, LEI G, TIAN A G, ZHANG W K, MA B, ZHANG J S, CHEN S Y. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants.The Plant Journal, 2011, 68: 302-313.
[14] Jensen M K, Kjaersgaard T, Nielsen M M, GALBERG P, PETERSEN K, OSHEA C, SKRIVER K. The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signaling. Biochemical Journal, 2010, 426(2) : 183-196.
[15] Zhao Q, Gallego-Giraldo L, Wang H, ZENG Y, DING S Y, CHEN F, DIXON R. An NAC transcription factor orchestrates multiple features of cell wall development in Medicago truncatula. The Plant Journal, 2010, 63(1): 100-114.
[16] 申玉华, 徐振军, 杨晓坡, 相吉山, 文静, 黄文婕. 紫花苜蓿NAC转录因子MsNAC1基因的克隆、生物信息学分析及非生物逆境胁迫下的表达分析. 植物遗传资源学报, 2014, 15(6): 1312-1319.
SHEN Y H, XU Z J, YANG X P, XIANG J S, WEN J, HUANG W J. Cloning and bioinformatics analysis of an novel NAC transcription factor MsNAC1 from Medicago sativa L.and detection of its expression under abiotic stresses. Journal of Plant Genetic Resources, 2014, 15(6): 1312-1319. (in Chinese)
[17] 李小兰, 胡玉鑫, 杨星, 于晓东, 李秋莉. 非生物胁迫相关NAC转录因子的结构及功能. 植物生理学报, 2013, 49(10): 1009-1017.
LI X L, HU Y X, YANG X, YU X D, LI Q L. Structure and functions of NAC transcription factors involved in abiotic stress. Plant Physiology Journal, 2013, 49(10): 1009-1017. (in Chinese)
[18] 孙利军, 李大勇, 张慧娟, 宋凤鸣. NAC转录因子在植物抗病和抗非生物胁迫反应中的作用. 遗传, 2012, 34(8): 993-1002.
SUN L J, LI D Y, ZHANG H J, SONG F M. Functions of NAC transcription factors in biotic and abiotic stress responses in plants. Hereditas, 2012, 34(8): 993-1002. (in Chinese)
[19] Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi S K, Nakashima K. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Molecular Genetics and Genomics, 2010, 284(3): 173-183.
[20] Jeong J S, Kim Y S, Baek K H, Jung H, Ha S H, Choi D Y, Kim M, Reuzeau C, Kim J K. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiology, 2010, 153(1): 185-197.
[21] 杜敏敏, 邓磊, 李传友. 番茄中两个高度同源的NAC类转录因子通过不同的机制调控病原菌诱导的气孔子关闭和重新开张. 遗传, 2014, 36(8): 847.
DU M M, DENG L, LI C Y. Two highly homologous NAC transcription factors in tomato are regulated by different mechanisms to regulate pathogen-induced stomatal closure and reopening. Hereditas, 2014, 36(8): 847. (in Chinese)
[22] Zhu M, Hu Z , Zhou S, Wang L, Dong T. Molecular characterization of six tissue-specific or stress-inducible genes of NAC transcription factor family in tomato (Solanum lycopersicum). Journal of Plant Growth Regulation, 2014, 33(4): 730-744.
[23] Jensen M K, Kjaersgaard T, Nielsen M M, Galberg P, Petersen K. The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling. Biochemical Journal, 2010, 426(2): 183-196.
[24] Bu Q, Jiang H, Li C B, Zhai Q, Zhang J. Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Research, 2008, 18(7): 756-767.
[25] Jiang H, Li H, Bu Q, Li C. The RHA2a-interacting proteins ANAC019and ANAC055 may play a dual role in regulating ABA response and jasmonate response. Plant Signaling & Behavior, 2009, 4(5): 464-466.
[26] Welner D H, Ernst H A, Olsen A N, Grossmann J G, Helgstrand C. Structural characterization of ANAC019, a member of the NAC family of plant transcription factors. Acta Crystallographica, 2001, 64(a1): C306-C307.
[27] Fujiwara T, Hirai M Y, Chino M, KOMEDA Y, NAITO S. Effects of sulfur nutrition on expression of the soybean seed storage protein genes in transgenic petunia. Plant Physiology, 1992, 99(1): 263-268.
[28] 何访, 梅文莉, 郭冬, 李辉亮, 彭世清. 植物激素应答元件研究进展. 热带作物学报, 2015, 36(1): 211-218.
HE F, MEI W L, GUO D, LI H L, PENG S Q. Advancement of phytohormone response cis-elements. Chinese Journal of Tropical Crops, 2015, 36(1): 211-218. (in Chinese)
[29] 张毅, 尹辉, 李丹, 朱巍巍, 李秋莉. 植物启动子的化学因素诱导元件. 植物生理学报, 2007, 43(4): 787-794.
ZHANG Y, YIN H, LI D, ZHU W W, LI Q L. The Cis-elements of plant chemic inducible promoters. Plant Physiology and Molecular Biology, 2007, 43(4): 787-794. (in Chinese)
[30] Riechmann J L, Heard J, Martin G, Reuber L, Jiang C Z, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D B, Sherman K, Yu G L. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science, 2000, 290: 2105-2110.
[31] Ernst H A, Olsen A N, Skriver K, Larsen S, Leggio L L. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. Embo Reports, 2004, 5(3): 297-303.
[32] Jensen M K, Rung J H, Gregersen P L, Gjetting T, Fuglsang A T, Hansen M, Joehnk N, Lyngkjaer M F, Collinge D B. The HvNAC6 transcription factor: A positive regulator of penetration resistance in barley and Arabidopsis. Plant Molecular Biology, 2007, 65 (1/2): 137-150.
[33] Tran L S P, Nakashima K, Sakuma Y, Simpson S D, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Isolation and functional analysis of Arabidopsis stress -inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell Online, 2004, 16(9): 2481-2498.
[34] 李伟, 韩蕾, 钱永强, 孙振元. 植物NAC转录因子的种类、特征及功能. 应用与环境生物学报, 2011(4): 596-606.
LI W, HAN L, QIAN Y Q, SUN Z Y. Characteristics and functions of NAC transcription factors in plants. Chinese Journal of Applied and Environmental Biology, 2011(4): 596-606. (in Chinese) |