[1] Fahey J W, Zhang Y, Talalay P. Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proceedings of the National Academy of Sciences of the United States America, 1997, 94: 10367-10372.
[2] Fahey J W, Zalcmann A T, Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry, 2001, 56: 5-51.
[3] Yan X F, Chen S X. Regulation of plant glucosinolate metabolism. Planta, 2007, 226: 1343-1352.
[4] Kliebenstein D J, Kroymann J, Mitchell-Olds T. The glucosinolate-myrosinase system in an ecological and evolutionary context. Current Opinion in Plant Biology, 2005, 8: 264-271.
[5] Natella F, Maldini M, Leoni G, Scaccini C. Glucosinolates redox activities: can they act as antioxidants? Food Chemistry, 2014, 149: 226-232.
[6] Stotz H U, Sawada Y, Shimada Y, Hirai M Y, Sasaki E, Krischke M, Brown P D, Saito K, Kamiya Y. Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum. The Plant Journal, 2011, 67: 81-93.
[7] Winde I, Wittstock U. Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system. Phytochemistry, 2011, 72: 1566-1575.
[8] Rohr F, Ulrichs C, Schreiner M, Zrenner R, Mewis I. Responses of Arabidopsis thaliana plant lines differing in hydroxylation of aliphatic glucosinolate side chains to feeding of a generalist and specialist caterpillar. Plant Physiology and Biochemistry, 2012, 55: 52-59.
[9] Santolamazza-Carbone S, Velasco P, Soengas P, Cartea M E. Bottom-up and top-down herbivore regulation mediated by glucosinolates in Brassica oleracea var. acephala. Oecologia, 2014, 174: 893-907.
[10] Prakash D, Gupta C. Glucosinolates: the phytochemicals of nutraceutical importance. Journal of Complementary﹠Integrative Medicine, 2012, 9: 1553-3840.
[11] Dinkova-Kostova A T, Kostov R V. Glucosinolates and isothiocyanates in health and disease. Trends in Molecular Medicine, 2012, 18: 337-347.
[12] Wittstock u, Halkier B A. Glucosinolate research in the Arabidopsis era. Trends in Plant Science, 2002, 7: 263-270.
[13] Sønderby I E, Geuflores F, Halkier B A. Biosynthesis of glucosinolates-gene discovery and beyond. Trends in Plant Science, 2010, 15: 283-290.
[14] Burow M, Halkier B A, Kliebenstein D. Regulatory networks of glucosinolates shape Arabidopsis thaliana fitness.Current Opinion in Plant Biology, 2010, 13: 347-352.
[15] Sønderby I E, Burow M, Rowe H C, Kliebenstein D J, Halkier B A. A complex interplay of three R2R3-MYB transcription factors determines the profile of aliphatic glucosinolates in Arabidopsis. Plant Physiology, 2010, 153: 348-363.
[16] Gigolashvili T, Berger B, Mock H P, Müller C, Weisshaar B, Flügge U I. The transcription factor HIG1/ MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. The Plant Journal, 2007, 50: 886-901.
[17] Schweizer F, Fernández-Calvo P, Zander M, Diez-Diaz M, Fonseca S, Glauser G, Lewsey M G, Ecker J R, Solano R, Reymond P. Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. The Plant Cell, 2013, 25: 3117-3132.
[18] Frerigmann H, Berger B, Gigolashvili T. bHLH05 is an interaction partner of MYB51 and a novel regulator of glucosinolate biosynthesis in Arabidopsis. Plant Physiology, 2014, 166: 349-369.
[19] Skirycz A, Reichelt M, Burow M, Birkemeyer C, Rolcik J, Kopka J, Zanor M I, Gershenzon J, Strnad M, Szopa J, Mueller-Roeber B, Witt I. DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. The Plant Journal, 2006, 47: 10-24.
[20] Gigolashvili T, Engqvist M, Yatusevich R, Müller C, Flügge U I. HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. New Phytologist, 2008, 177: 627-642.
[21] Li Y, Sawada Y, Hirai A, Sato M, Kuwahara A, Yan X, Hirai M Y. Novel insights into the function of Arabidopsis R2R3-MYB transcription factors regulating aliphatic glucosinolate biosynthesis. Plant &Cell Physiology, 2013, 54: 1335-1344.
[22] Frerigmann H, Gigolashvili T. MYB34, MYB51 and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana. Molecular Plant, 2014, 7: 814-828.
[23] Petersen B L, Chen S, Hansen C H, Olsen C E, Halkier B A. Composition and content of glucosinolates in developing Arabidopsis thaliana. Planta, 2002, 214: 562-571.
[24] Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D'angelo C, Bornberg-Bauer E, Kudla J, Harter K. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. The Plant Journal, 2007, 50: 347-363.
[25] Goda H, Sasaki E, Akiyama K, Maruyama-Nakashita A, Nakabayashi K, Li W, Ogawa M, Yamauchi Y, Preston J, Aoki K, Kiba T, Takatsuto S, Fujioka S, Asami T, Nakano T, Kato H, Mizuno T, Sakakibara H, Yamaguchi S, Nambara E, Kamiya Y, Takahashi H, Hirai M Y, Sakurai T, Shinozaki K, Saito K, Yoshida S, Shimada Y. The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access.The Plant Journal, 2008, 55(3): 526-542.
[26] Dash S, Van Hemert J, Hong L, Wise R P, Dickerson J A. PLEXdb: gene expression resources for plants and plant pathogens. Nucleic Acids Research, 2012, 40: 1194-1201.
[27] de Hoon M J, Imoto S, Nolan J, Miyano S. Open source clustering software. Bioinformatics, 2004, 20: 1453-1454.
[28] De Vos M, Van Oosten V R, Van Poecke R M, Van Pelt J A, Pozo M J, Mueller M J, Buchala A J, Métraux J P, Van Loon L C, Dicke M, Pieterse C M. Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Molecular Plant-Microbe Interactions, 2005, 18(9): 923-937.
[29] Kempema L A, Cui X, Holzer F M, Walling L L. Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiology, 2007, 143(2): 849-865.
[30] Ford K A, Casida J E, Chandran D, Gulevich A G, Okrent R A, Durkin K A, Sarpong R, Bunnelle E M, Wildermuth M C. Neonicotinoid insecticides induce salicylate- associated plant defense responses. Proceedings of the National Academy of Sciences the United States America, 2010, 107(41): 17527-17532.
[31] Saldanha A J. Java Treeview--extensible visualization of microarray data. Bioinformatics, 2004, 20: 3246-3248.
[32] Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou K P, Kuhn M, Bork P, Jensen L J, von Mering C. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Research, 2015, 43: D447-452.
[33] Petersen B L, Chen S, Hansen C H, Olsen C E, Halkier B A. Composition and content of glucosinolates in developing Arabidopsis thaliana. Planta, 2002, 214: 562-571.
[34] Nour-Eldin H H, Andersen T G, Burow M, Madsen S R, Jørgensen M E, Olsen C E, Dreyer I, Hedrich R, Geiger D, Halkier B A. NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds. Nature, 2012, 488(7412): 531-534.
[35] Andersen T G, Nour-Eldin H H, Fuller V L, Olsen C E, Burow M, Halkier B A. Integration of biosynthesis and long-distance transport establish organ-specific glucosinolate profiles in vegetative Arabidopsis. The Plant Cell, 2013, 25(8): 3133-3145.
[36] Léran S, Varala K, Boyer J C, Chiurazzi M, Crawford N, Daniel-Vedele F, David L, Dickstein R, Fernandez E, Forde B, Gassmann W, Geiger D, Gojon A, Gong J M, Halkier B A, Harris J M, Hedrich R, Limami A M, Rentsch D, Seo M, Tsay Y F, Zhang M, Coruzzi G, Lacombe B. A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends in Plant Science, 2014, 19(1): 5-9.
[37] Gigolashvili T, Yatusevich R, Berger B, Müller C, Flügge U I. The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. The Plant Journal, 2007, 51: 247-261.
[38] Gigolashvili T, Engqvist M, Yatusevich R, Müller C, Flügge U I. HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. New Phytology, 2008, 177: 627-642.
[39] Frerigmann H, Gigolashvili T. MYB34, MYB51 and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana. Molecular Plant, 2014, 7: 814-828.
[40] 文碧玲, 李培武, 李航森, 赵力, 余萍, 邹俊清, 张文, 丁小霞, 杨湄, 汪雪芳, 吴渝. 油菜吲哚硫苷降解产物对S180小鼠抗肿瘤作用的实验研究. 中草药, 2002, 33: 331-333.
Wen B L, Li P W, Li H S, Zhao L, Yu P, Zou J Q, Zhang W, Ding X X, Yang M, Wang X F, Wu Y. Studies on antitumor effect of INDL-GLN in rape on mice transplanted S180 cell. Chinese Traditional and Herbal Drugs, 2002, 33: 331-333. (in Chinese)
[41] Li Y, Kiddle G, Bennett R N, Wallsgrove R M. Local and systemic changes in glucosinolates in Chinese and European cultivars of oilseed rape (Brassica napus L.) after inoculation with Sclerotinia sclerotiorun (stem rot). Annals of Applied Biology, 1999, 134: 45-58.
[42] 宋志荣, 官春云. 甘蓝型油菜硫苷特性与对菌核病抗性关系. 湖南农业大学学报(自然科学版), 2008, 34: 462-465.
Song Z R, Guan C Y. Relationship between glucosinolate characteristics and resistance to Sclerotinia sclerotiorum in Brassica napus L.. Journal of Hunan Agricultural University (Natural Science), 2008, 34: 462-465. (in Chinese)
[43] Wittstock U, Burow M. Glucosinolate breakdown in Arabidopsis: mechanism, regulation and biological significance. Arabidopsis Book, 2010, 8: e0134. |