中国农业科学 ›› 2016, Vol. 49 ›› Issue (15): 2879-2897.doi: 10.3864/j.issn.0578-1752.2016.15.003

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

拟南芥硫苷生物合成相关基因的组织和胁迫诱导表达谱的全基因组分析

杜 海,冉 凤,刘 静,文 婧,马珊珊,柯蕴倬,孙丽萍,李加纳   

  1. 西南大学农学与生物科技学院,重庆400715
  • 收稿日期:2016-03-09 出版日期:2016-08-01 发布日期:2016-08-01
  • 通讯作者: 李加纳,Tel:13509496702;E-mail:ljn1950@swu.edu.cn
  • 作者简介:杜海,Tel:1822348008;E-mail:haidu81@aliyun.com
  • 基金资助:
    国家自然科学基金(31471528)、国家“973”项目(2015CB150201)、国家博士后基金面上项目(2014M552297)、中央高校基本科研业务费专项资金(SWU113104,XDJK2014B035和2362015xk05)、国家级大学生创新创业训练计划(201510635026,201610635019)

Genome-Wide Expression Analysis of Glucosinolate Biosynthetic Genes in Arabidopsis Across Diverse Tissues and Stresses Induction

DU Hai, RAN Feng, LIU Jing, WEN Jing, MA Shan-shan, KE Yun-zhuo, SUN Li-ping, LI Jia-na   

  1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400715
  • Received:2016-03-09 Online:2016-08-01 Published:2016-08-01

摘要: 【目的】分析拟南芥中硫代葡萄糖苷(Glucosinolatcs,简称硫苷)生物合成相关基因在不同组织器官、不同发育时期及不同生物和非生物胁迫处理条件下的表达谱,为筛选控制硫苷合成的关键基因、解析硫苷的生物合成规律及其在植物抗逆胁迫过程中的作用奠定基础。【方法】利用AtGenExpress和PLEXdb中的10组表达谱芯片数据和2组转录组数据分析拟南芥中硫苷生物合成途径82个结构基因和调控基因的时空表达特性及其受生物和非生物胁迫的表达模式;采用Real-time PCR技术对10个硫苷合成途径的关键结构基因和调控基因的表达谱进行验证;并利用STRING v10软件分析硫苷生物合成途径相关基因的表达模式的相关性。【结果】组织表达特性分析结果表明,拟南芥硫苷生物合成相关基因在营养器官和生殖器官中的表达模式差异较大,相关基因在营养器官中具有较高的表达量,在生殖器官中的表达量则较低,表明硫苷主要在营养组织中合成;其中脂肪族硫苷合成相关基因在茎、叶等地上营养组织中的表达量较高,而吲哚族硫苷合成相关基因则在根、茎、叶等地上和地下组织中均有较高的表达,且基因在同一组织的不同发育时期的表达量通常具有差异,表明基因的表达还具有时空特异性;荧光定量PCR分析结果证明10个硫苷合成途径代表基因的表达谱与芯片数据的结果保持一致;胁迫表达分析结果表明,脂肪族和吲哚族硫苷合成相关基因的表达均受到部分生物和非生物胁迫因子的诱导表达,其中吲哚族硫苷合成相关基因更易受到丁香假单胞杆菌(Pseudomonas syringae)、甘蓝链格孢菌(Alternaria brassicicola)、桃蚜(Myzus persicae)等生物和低温(4℃)、高盐、高温(38℃)等非生物胁迫因子的诱导表达;共表达分析结果表明,脂肪族和吲哚族硫苷合成分支途径内相关调控基因与结构基因的表达模式的相关性较高。【结论】拟南芥硫苷生物合成相关基因主要在营养组织中高表达,在种子中低表达;植物中存在一个硫苷转运系统,负责将营养组织中合成的硫苷转运到种子中贮藏;硫苷合成相关基因的表达受到病原菌、虫害、高温等逆境因子的影响,其中吲哚族硫苷合成相关基因更易受到生物和非生物胁迫因子的诱导表达,说明吲哚族硫苷可能对植物抗性更为重要。

关键词: 拟南芥, 硫苷, 表达模式, 发育时期, 生物胁迫, 非生物胁迫, 实时荧光定量PCR

Abstract: 【Objective】The aim of this study is to analyze the expression profiles of Arabidopsis glucosinolate biosynthetic genes in different tissues at different developmental stages and under various stress treatments, so as to facilitate the identification of the key genes involved in controlling glucosinolate biosynthesis and provide valuable information for exploring the metabolic mechanism of glucosinolate biosynthesis as well as their functions in plant defenses. 【Method】 The dynamic expression profiles of 82 glucosinolate biosynthetic structural genes and regulating genes across a wide range of developmental stages and biotic and abiotic stresses were examined, based on ten expression microarray data and two RNA-Seq data in PLEXdb and AtGenExpress database. The expression patterns of ten key structural genes and regulating genes involved in glucosinolate biosynthesis pathway were further confirmed by Real-time PCR method. The correlation of the expression patterns of glucosinolate biosynthesis related genes was analyzed by STRING v10 software. 【Result】 The expressions of candidate genes between vegetative and reproductive organs were significantly different, with the majority of the candidate genes have higher expression levels in vegetative organs and lower expression levels in reproductive organs, indicating glucosinolates were mainly synthesized in vegetative tissues. The aliphatic glucosinolate biosynthesis genes were preferential expressed in shoot, such as stems and leaves, while indolic glucosinolate related genes were highly expressed in both of root and shoot, such as roots, stems and leaves. Moreover, the expressions of genes in a given tissue at different developmental stages were generally distinct, implying a temporal and spatial expression pattern. Real-time PCR analyses revealed that the expression profiles of the ten representive glucosinolate biosynthetic genes kept consistent with the results of microarray data assay. Furthermore, the expressions of aliphatic and indolic glucosinolate biosynthesis genes were tend to be induced by many bio- and abio-stresses, whereas indolic glucosinolate biosynthesis related genes were obviously induced by bio- and abio-stresses, such as Pseudomonas syringae, Alternaria brassicicola, Myzus persicae, low temperature (4℃), salt and high temperature (38℃). In addition, co-expression analysis revealed that the expressions of regulating genes were highly correlated to those of metabolic genes in aliphatic or indolic glucosinolate biosynthesis pathway. 【Conclusion】 The glucosinolates biosynthesis genes were preferentially expressed in vegetative tissues, as compared to seed tissues. There is a transport system that is responsible for transporting glucosinolates that were synthesized in vegetative tissues to seed tissues. The expressions of indolic glucosinolate biosynthesis genes tend to be induced by bio- and abio-stresses, indicating indolic glucosinolates are more important for Arabidopsis defense.

Key words: Arabidopsis thaliana, glucosinolates, expression patterns, development stage, biotic stresses, abiotic stresses, real- time PCR