[1] Bartel D P. MicroRNAs:genomics,biogenesis,mechanism,andfunction. Cell, 2004, 116(2):281-297.
[2] Xu W, Wang Z, Liu Y. The characterization of microRNA-Mediated gene regulation as impacted by both target site location and seed match type. PLoS One, 2014, 9(9):e108260.
[3] Jin Y, Lee C G. Single nucleotide polymorphisms associated with microRNA regulation. Biomolecules, 2013, 3(2):287-302.
[4] Jevsinek S D, Godnic I, Zorc M, Horvat S, Dovc P, Kovac M, Kunej T. Genome-wide in silico screening for microRNA genetic variability in livestock species. Animal Genetics, 2013, 44(6): 669-677.
[5] Zorc M, Skok D J, Godnic I, Calin G A, Horvat S, Jiang Z, Dovc P, Kunej T.Catalog of microRNA seed polymorphisms in vertebrates. PLoS One,2012,7(1):e30737.
[6] 耿立英, 张传生, 杜立新. 鸡基因组pre-microRNA SNP多态性的分析与研究. 生物多样性, 2009, 17(3): 248-256.
Geng L Y, Zhang C S, Du L X. Single nucleotide polymorphisms in chicken genomic pre-microRNA. Biodiversity Science, 2009, 17(3): 248-256. (in Chinese).
[7] Wang X. Composition of seed sequence is a major determinant of microRNA targeting patterns. Bioinformatics, 2014, 30(10): 1377-1383.
[8] Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution , 2013, 30: 2725-2729.
[9] Shi Y Y, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Research, 2005, 15(2):97-98.
[10] Barrett J C, Fry B, Maller J, Daly M J. Haploview: analysis and visualization of L D and haplotype maps. Bioinformatics, 2005, 21(2): 263-265.
[11] Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 2003, 31(13): 3406- 3415.
[12] Huang da W, Sherman B T, Lempicki R A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 2009, 4(1):44-57.
[13] Landi D, Gemignani F, Barale R, Landi S. A catalog of polymorphisms falling in microRNA-binding regions of cancer genes. DNA Cell Biology, 2008, 27(1):35-43.
[14] Auyeung V C, Ulitsky I, McGeary S E, Bartel D P. Beyond secondary structure: primary-sequence determinants license pri-miRNA hairpins for processing. Cell, 2013, 152(4):844-858.
[15] Zeng Y, Rui Y, Cullen B R. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. The EMBO Journal, 2005, 24(1): 138-148.
[16] Zeng Y, Cullen B R. Structural requirements for pre-microRNA binding and nuclear export by exportin 5. Nucleic Acids Research, 2004, 32(16): 4776-4785.
[17] Duan R H, Pak C H, Jin P. Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-microRNA. Human Molecular Genetics, 2007, 16(9): 1124-1131.
[18] Mencía A, Modamio-Høybjør S, Redshaw N, Morín M, Mayo-Merino F, Olavarrieta L, Aguirre L A, del Castillo I, Steel K P, Dalmay T, Moreno F, Moreno-Pelayo M A. Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nature Genetics, 2009(5):609-613.
[19] Guryev V, Smits B M, van de Belt J, Verheul M, Hubner N, Cuppen E. Haplotype block structure is conserved across mammals. PLoS Genetics, 2006, 2(7):e121.
[20] Jazdzewski K, Murray E L, Franssila K, Jarzab B, Schoenberg D R, de la Chapelle A. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proceedings of the National Academy of Sciences of the USA, 2008, 105(20): 7269-7274.
[21] Jazdzews ki K, Liyanarachchi S, Swierniak M, Pachucki J, Ringel M D, Jarzab B, de la Chapelle A. Polymorphic mature microRNAs from passenger strand of pre-miR-146a contribute to thyroid cancer. Proceedings of the National Academy of Sciences of the USA, 2009, 106(5): 1502-1505.
[22] Tseng Y H, Kokkotou E, Schulz T J, Huang T L, Winnay J N, Taniguchi C M, Tran T T, Suzuki R, Espinoza D O, Yamamoto Y, Ahrens M J, Dudley A T, Norris A W, Kulkarni R N, Kahn C R. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure .Nature, 2008, 454(7207):1000-1004.
[23] Cui H, Zhao G, Liu R, Zheng M, Chen J, Wen J.FSH stimulates lipid biosynthesis in chicken adipose tissue by upregulating the expression of its receptor FSHR. Journal of Lipid Research, 2012,53(5):909-917.
[24] de Pons J, Dwinell M R, Shimoyama M, Munzenmaier D H, Worthey E A, Jacob H J. The Rat Genome Database 2013-data, tools and users.Brief Bioinformatics, 2013, 14(4):520-526.
[25] Negishi H, Ohba Y, Yanai H, Takaoka A, Honma K, Yui K, Matsuyama T, Taniguchi T, Honda K. Negative regulation of Toll-like-receptor signaling by IRF-4. Proceedings of the National Academy of Sciences of the USA,2005, 102(44):15989-15994.
[26] Yoshimura Y. Avian β-defensins expression for the innate immune system in hen reproductive organs. Poultry Science, 2015, 94(4): 804-809. |