[1] Hisako O, Kouji S, Koji D, Toshifumi N, Yasuhiro O, Kazuo M, Kenichi M, Naoki O, Jun K, Piero C, Yoshihide H, Koji S, Keiichi K, Yoshinori T, Koji Y, Shoshi K. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Research, 2003, 10: 239-247.
[2] Juan Z H, Feng W J, Hu S, Lin Y X. Isolation and expression analysis of BcNAC2, a NAC transcription factor gene in turnip. Acta Horticulturae Sinica, 2011, 38: 1089-1096.
[3] 李捷, 陈旭, 罗莉琼, 于晶, 明凤. ANAC092 参与调控花药发育的功能初探. 遗传, 2013, 35(7): 913-922.
Li J, Chen X, Luo L Q, Yu J, Ming F. Functions of ANAC092 involved in regulation of anther development in Arabidopsis thaliana. Hereditas, 2013, 35(7): 913-922. (in Chinese)
[4] Hao Y J, Wei W, Song Q X, Chen H W, Zhang Y Q, Wang F, Zou H F, Lei G, Tian A G, Zhang W K, Ma B, Zhang J S, Chen S Y. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. The Plant Journal, 2011, 68: 302-313.
[5] Hussey S G, Mizrachi E, Spokevicius A V, Bossinger, Berger D K, Myburg A A. SND2, a NAC transcription factor gene, regulates genes involved in secondary cell wall development in Arabidopsis fibres and increases fibre cell area in Eucalyptus. Biomed Central Plant Biology, 2011, 11: 173.
[6] Misato O, Nobuyuki N, Xu B, Masatoshi Y, Nobutaka M, Nadia G, Shi F, Masaru O T, Taku D. A NAC domain protein family contributing to the regulation of wood formation in poplar. The Plant Journal, 2011, 67: 499-512.
[7] Zhang K, Gan S S. An abscisic acid-atnap transcription factor sag113 protein phosphatase 2c regulatory chain for controlling dehydration in senescing Arabidopsis leaves. Plant Physiology, 2012, 158: 961-969.
[8] Yoon H K, Kim S G, Kim S Y, Park C M. Regulation of leaf senescence by NTL9-mediated osmotic stress signaling in Arabidopsis. Molecules and Cells, 2008, 25: 438-445.
[9] Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi- Shinozaki K. NAC transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta, 2012, 1819(2): 97-103.
[10] Xue G P, Way H M, Richardson T, Drenth J, Joyce P A, McIntyre C L. Overexpression of TaNAC69 leads to enhanced transcript levels of stress Up-Regulated genes and dehydration tolerance in bread wheat. Molecular Plant, 2011, 4: 697-712.
[11] Mao X G, Zhang H Y, Qian X Y, Li A, Zhao G Y, Jing R L. TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. Journal of Experimental Botany, 2012, 63: 1-14.
[12] Yang R C, Deng C T, Ouyang B, Ye Z B. Molecular analysis of two salt-responsive NAC-family genes and their expression analysis in tomato. Molecular Biology Reports, 2011, 38: 857-863.
[13] Ernst H A, Olsen A N, Skriver K, Larsen S, Leggio L L. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. The EMBO Reports, 2004, 5: 297-303.
[14] Hu H H, You J, Fang Y J, Zhu X Y, Qi Z Y, Xiong L Z. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Molecular Biology, 2008, 67: 169-181.
[15] Hu H H, Dai M Q, Yao J L, Xiao B, Li X H, Zhang Q F, Xiong L Z. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceedings of the National Academy of Sciences of the USA, 2006, 103: 12987-12992.
[16] Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 2006, 314: 1298-1301.
[17] Bu Q Y, Jiang H L, Li B, Zhai Q Z, Zhang J, Wu X Y, Sun J Q, Xie Q, Li C Y. Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Research, 2008, 18: 756-767.
[18] Nakashima K, Tran L S P, Van Nguyen D, Fujit M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. The Plant Journal, 2007, 51: 617-630.
[19] Lin R M, Zhao W S, Meng X B, Wang M, Peng Y L. Rice gene OsNAC19 encodes a novel NAC-domain transcription factor and responds to infection by Mag-naporthe grisea. Plant Science, 2007:172: 120-130.
[20] Oh S K, Lee S, Yu S H, Choi D. Expression of a novel NAC domain-containing transcription factor (CaNAC1) is preferentially associated with incompatible interactions between chili pepper and pathogens. Planta, 2005, 222: 876-887.
[21] Nogueira F T S, Schlogl P S, Camargo S R, Fernandez J H, De Rosa V E, Pompermayer P, Arruda P. SsNAC23, a member of the NAC domain protein family, is associated with cold, herbivory and water stress in sugarcane. Plant Science, 2005, 169: 93-106.
[22] Wang Y X. Characterization of a novel Medicago sativa NAC transcription factor gene involved in response to drought stress. Molecular Biology Reports, 2013, 40(11): 6451-6458.
[23] 申玉华, 徐振军, 杨晓坡, 相吉山, 文静, 黄文婕. 紫花苜蓿NAC转录因子MsNAC1基因的克隆、生物信息学分析及非生物逆境胁迫下的表达分析. 植物遗传资源学报, 2014,15(6): 1312-1319.
Shen Y H, Xu Z J, Yang X P, Xiang J S, Wen J, Huang W J. Cloning and bioinformatics analysis of an novel NAC transcription factor MsNAC1 from Medicago sativa L. and detection of its expression under abiotic stresses. Journal of Plant Genetic Resources, 2014, 15(6): 1312-1319. (in Chinese)
[24] 王关林, 方宏筠. 植物基因工程. 北京: 科学出版社, 2002: 742-744.
Wang G L, Fang H J. Plant Genetic Engineering. Beijing: Science Press, 2002: 742-744. (in Chinese)
[25] 赵世杰. 植物生理学实验指导. 北京: 中国农业科学技术出版社, 2004.
Zhao S J. Plant Physiology Experimental Guidance. Beijing: China Agricultural Science and Technology Press, 2004. (in Chinese)
[26] 李明娜, 龙瑞才, 杨青川, 沈益新, 康俊梅, 张铁军. 紫花苜蓿盐诱导HD-Zip类转录因子MsHB2的克隆及功能分析. 中国农业科学, 2014, 47(4): 622-632.
Li M N, Long R C, Yang Q C, Shen Y X, Kang J M, Zhang T J. Cloning and function analysis of a salt-stress-induced HD-Zip transcription factor MsHB2 from Alfalfa. Scientia Agricultura Sinica, 2014, 47(4): 622-632. (in Chinese)
[27] Riechmann J L, Heard J, Martin G, Reuber L, Jiang C Z, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D B, Sherman K, Yu G L. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science, 2000, 290: 2105-2110.
[28] Fang Y J, You J, Xie K B, Xie W B, Xiong L Z. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Molecular Genetics and Genomics, 2008, 280: 535-546.
[29] Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi1 S. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Research, 2003, 10: 239-247.
[30] Fan J, Gao X, Yang Y W, Deng W, Li Z G. Molecular cloning and characterization of a NAC-like gene in ‘navel’ orange fruit response to post harvest stresses. Plant Molecular Biology Reporter, 2007, 25(3): 145-153.
[31] Jensen M K, Rung J H, Gregersen P L, Gjetting T, Fuglsang A T, Hansen M, Joehnk N, Lyngkjaer M F, Collinge D B. The HvNAC6 transcription factor: A positive regulator of penetration resistance in barley and Arabidopsis. Plant Molecular Biology, 2007, 65: 137-150.
[32] Tran L S P, Nakashima K, Sakuma Y, Simpson S D, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Isolation and functional analysis of Arabidopsis stress inducible NAC transcription factors that bind to a drought responsive cis-element in the early responsive to dehydration stress 1 promoter. The Plant Cell, 2004, 16: 2481-2498.
[33] Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K. Tolerance to various environmental stresses conferred by thesalt-responsive rice gene ONAC063 in transgenic Arabidopsis. Planta, 2009, 229(5): 1065-1075.
[34] Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran L S P, Yamaguchi-Shinozaki K, Shinozaki K. A dehydration- induced NAC protein, RD26, is involved in a novel ABA dependent stresssignaling pathway. The Plant Journal, 2004, 39: 863-876.
[35] Jain M, Mathur G, Koul S, Sarin N B. Ameliorative effects of proline on salt stress-indueed lipid Peroxidation in cell lines of groundnut (Arachis hypogea L.). Plant Cell Reports, 2001, 20: 463-468.
[36] 赵福庚, 刘友良. 胁迫条件下高等植物体内脯氨酸代谢及调节的研究进展. 植物学通报, 1999, 16(5): 540-546.
Zhao F G, Liu Y L. Advances in study on metabolism and regulation of prolinein higher plants under stress. Chinese Bulletin of Botany, 1999, 16(5): 540-546. (in Chinese)
[37] Badawi G H, Yamauchi Y, Shimada E, Sasaki R, Kawano N, Tanaka K, Tanaka K. Enhanced tolerancc to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Science, 2004, 166: 919-928. |