中国农业科学 ›› 2015, Vol. 48 ›› Issue (4): 646-660.doi: 10.3864/j.issn.0578-1752.2015.04.03
李振华1,2,王建华1
收稿日期:
2014-08-27
出版日期:
2015-02-16
发布日期:
2015-02-16
通讯作者:
王建华,Tel:010-62732263;E-mail:Wangjh63@cau.edu.cn
作者简介:
李振华,Tel/Fax:0851-4117096;E-mail:lixing_19841014@126.com
基金资助:
LI Zhen-hua1,2, WANG Jian-hua1
Received:
2014-08-27
Online:
2015-02-16
Published:
2015-02-16
摘要: 种子活力形成于种子发育的脱水阶段,与以往理解不同,近来研究表明种子脱水不仅仅是一个简单的失水过程,脱水与萌发存在一些相同的基因表达和代谢特征。萌发始于吸水膨胀,种子代谢恢复,胚根突破胚乳和种皮等外围包被组织完成萌发。种子萌发的质量关键在于储藏的mRNA的质量,另外,蛋白质稳定性和DNA完整性影响萌发的表型。激素作为一种信号小分子物质,浓度极小甚至是趋于零时对种子萌发仍具有非常重要的作用,近年来研究表明ABA/GAs的阈值范围调控种子休眠与萌发,其中,ABA几乎作用于种子萌发的全部过程,GA的作用并不像ABA那样广泛,主要在胚根突出时发生作用,且ABA和GA彼此抑制对方的合成与分解代谢基因,它们均可调控α-淀粉酶基因的转录。除ABA和GA外,近来发现AUX参与调控种子的休眠与萌发,其对胚根突出的调控比对子叶开展更加精细,AUX信号与ABA信号存在交叉,AUX通过其响应蛋白ARF10/16间接调控ABA信号通路中ABI3的稳定性来调控拟南芥种子休眠与萌发。与光照条件下相比,在土壤中萌发的幼苗将形成一个特异性的组织“顶钩”,它的主要作用是在幼苗“顶土”时保护顶端分生组织,“顶钩”形成与生长素的不均匀分布有关。为了提高种子活力,引发技术被运用于生产,引发的关键在于控制种子“萌而未发”,在“回干窗口”内及时脱水,引发过程中种子储藏的mRNAs和蛋白已经执行功能,回干后这种分子机制被“牢记”,再吸胀的种子可以迅速整齐的萌发。除毒害分子外,ROS还作为信号分子参与调控种子休眠释放、胚乳松弛和贮藏物动员,且其与激素分子ABA和GA等存在交互作用,ROS还参与蛋白的翻译和翻译后修饰调控种子萌发吸水和贮藏物动员。在种子萌发过程中,甲硫氨酸代谢是代谢核心,其代谢产物广泛参与调控种子萌发的一些生理生化反应,如:DNA的合成,蛋白质的稳定性,染色体结构的形成和重塑,生物素的合成等,另外还与激素分子ABA、GA、ETH和CTK及活性氧活性(氮)存在交互作用。近来还发现甲硫氨酸亚砜还原酶决定种子的寿命,它可能是种子活力的一个新的分子标记。本文将围绕上述内容对国内外研究现状进行综述,并对今后的研究热点,种子“提早”收获的感官依据,高活力种子田间出苗差异的分子机制,生长素在胚根突出时的重要作用,甲硫氨酸代谢,种子活力检测方法的选择等内容进行了展望。
李振华,王建华. 种子活力与萌发的生理与分子机制研究进展[J]. 中国农业科学, 2015, 48(4): 646-660.
LI Zhen-hua, WANG Jian-hua. Advances in Research of Physiological and Molecular Mechanism in Seed Vigor and Germination[J]. Scientia Agricultura Sinica, 2015, 48(4): 646-660.
[1] Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D. Seed germination and vigor. Annual Review of Plant Biology, 2012, 63: 507-533.
[2] Catusse J, Strub J M, Job C, Dorsselaer A V, Job D. Proteome-wide characterization of sugarbeet seed vigor and its tissue specific expression. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(29): 10262-10267.
[3] Beuchat J, Li S W, Ragni L, Shindo C, Kohn M H, Hardtke C S. A hyperactive quantitative trait locus allele of Arabidopsis BRX contributes to natural variation in root growth vigor. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(18): 8475-8480.
[4] Châtelain E, Satour P, Laugier E, Vu B L, Payet N, Rey P, Montrichard F. Evidence for participation of the methionine sulfoxide reductase repair system in plant seed longevity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110 (9): 3633-3638.
[5] Angelovici R, Galili G, Fernie A R, Fait A. Seed desiccation: A bridge between maturation and germination. Trends in Plant Science, 2010, 15(4): 211-218.
[6] Graeber K, Nakabayashi K, Miatton E, Leubner-metzger G, Soppe W J J. Molecular mechanisms of seed dormancy. Plant, Cell and Environment, 2012, 35: 1769-1786.
[7] Ventura L, Donà M, Macovei A, Carbonera D, Buttafava A, Mondoni A, Rossi G, Balestrazzi A. Understanding the molecular pathways associated with seed vigor.Plant Physiology and Biochemistry,2012, 60: 196-206.
[8] Gomes M P, Garcia Q S. Reactive oxygen species and seed germination. Biologia,2013, 68(3): 351-357.
[9] Corbineau F. Markers of seed quality: From present to future. Seed Science Research, 2012, 22: S61-S68.
[10] Vanstraelen M, Benková E. Hormonal interactions in the regulation of plant development. Annual Review of Cell and Developmental Biology, 2012, 28: 463-487.
[11] Diaz-Vivancos P, Barba-Espín G, Hernández J A. Elucidating hormonal/ROS networks during seed germination: Insights and perspectives. Plant Cell Reports, 2013, 32: 1491-1502.
[12] Xu R, Li Y H. Control of final organ size by Mediator complex subunit 25 in Arabidopsis thaliana. Development, 2011, 138: 4545-4554.
[13] Peng Y C, Ma W Y , Chen L L, Yang L, Li S J, Zhao H T, Zhao Y K, Jin W H, Li N, Bevan M W, Li X, Tong Y P, Li Y H. Control of root meristem size by DA1-RELATED PROTEIN2 in Arabidopsis.Plant Physiology, 2013, 161(3): 1542-1556.
[14] Ma H Y, Song L R, Shu Y J, Wang S, Niu J, Wang Z K, Yu T, Gu W H, Ma H. Comparative proteomic analysis of seedling leaves of different salt tolerant soybean genotypes. Journal of Proteomics, 2012, 75: 1529-1546.
[15] Wang L Q, Ma H, Song L R, Shu Y J, Gu W H. Comparative proteomics analysis reveals the mechanism of pre-harvest seed deterioration of soybean under high temperature and humidity stress. Journal of Proteomics, 2012, 75: 2109-2127.
[16] Wang W Q, Møllerb I M, Song S Q. Proteomic analysis of embryonic axis of Pisum sativum seeds during germination and identification of proteins associated with loss of desiccation tolerance. Journal of Proteomics, 2012, 77: 68-86.
[17] 孙群, 王建华, 孙宝启. 种子活力的生理和遗传机理研究进展. 中国农业科学, 2007, 40(1): 48-53.
Sun Q, Wang J H, Sun B Q. Advances on seed vigor physiological and genetic mechanisms. Scientia Agricultura Sinica, 2007, 40(1): 48-53. (in Chinese)
[18] 舒英杰, 陶源, 王爽, 马洪雨, 宋利茹, 于兴旺, 麻浩. 高等植物种子活力的生物学研究进展. 西北植物学报, 2013, 33(8): 1709-1716.
Shu Y J, Tao Y, Wang S, Ma H Y, Song L R, Yu X W, Ma H. Research progress on seed vigor of biology of higher plant. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(8): 1709-1716. (in Chinese)
[19] 徐恒恒, 黎妮, 刘树君, 王伟青, 王伟平, 张红, 程红焱, 宋松泉. 种子萌发及其调控的研究进展. 作物学报, 2014, 40(7): 1141-1156.
Xu H H, Li N, Liu S J, Wang W Q, Wang W P, Zhang H, Cheng H Y, Song S Q. Research progress in seed germination and its control. Acta Agronomica Sinica, 2014, 40(7): 1141-1156. (in Chinese)
[20] Bailly C, Audigier C, Ladonne F, Wagner M H, Coste F, Corbineau F, Côme D. Changes in oligosaccharide content and antioxidant enzyme activities in developing bean seeds as related to acquisition of drying tolerance and seed quality. Journal of Experimental Botany, 2001, 52: 701-708.
[21] Leprince O, Hendry G A F, McKersie B D. The mechanisms of desiccation tolerance in developing seeds. Seed Science Research, 1993, 3: 231-246.
[22] Verdier J, Thompson R D. Transcriptional regulation of storage protein synthesis during dicotyledon seed filling. Plant and Cell Physiology, 2008, 49: 1263-1271.
[23] Farrant J M, Bailly C, Leymarie J, Hamman B, Côme D, Corbineau F. Wheat seedlings as a model to understand desiccation tolerance and sensitivity. Physiologia Plantarum, 2004, 120: 563-574.
[24] Tunnacliffe A, Wise M J. The continuing conundrum of the LEA proteins. Naturwissenschaften, 2007, 94: 791-812.
[25] Wehmeyer N, Hernandez L D, Finkelstein R R, Vierling E. Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation. Plant Physiology, 1996, 112: 747-757.
[26] Bailly C. Active oxygen species and antioxidants in seed biology. Seed Science Research, 2004, 14: 93-107.
[27] Rajjou L, Debeaujon I. Seed longevity: Survival and maintenance of high germination ability of dry seeds. Comptes Rendus Biologies, 2008, 331: 796-805.
[28] Wolkers W F, Tetteroo F A A, Alberda M, Hoekstra F A. Changed properties of the cytoplasmic matrix associated with desiccation tolerance of dried carrot somatic embryos. An in situ fourier transform infrared spectroscopic study. Plant Physiology, 1999, 120: 153-163.
[29] Sun W Q, Irving T C, Leopold A C. The role of sugar, vitrification and membrane phase transition in seed desiccation tolerance. Physiologia Plantarum, 1994, 90: 621-628.
[30] 李振华, 林永杰, 刘一灵, 孙娜娜, 陈尧, 龙明锦. 常温低湿储藏对烤烟种子活力和萌发特性的影响. 中国农业大学学报, 2014, 19(1): 80-86.
Li Z H, Lin Y J, Liu Y L, Sun N N, Chen Y, Long M J. Variation on seed vigor and germination stored at room temperature and low humidity situation. Journal of China Agricultural University, 2014, 19(1): 80-86. (in Chinese)
[31] Kucera B, Cohn M A, Leubner-Metzger G. Plant hormone interactions during seed dormancy release and germination. Seed Science Research, 2005(15): 281-307.
[32] Gubler F, Jacobsen J V. Gibberellin-responsive elements in the promoter of a barley high-pI alpha-amylase gene. The Plant Cell, 1992, 4: 1435-1441.
[33] Rogers J C, Rogers S W. Definition and functional implications of gibberellin and abscisic acid cis-acting hormone response complexes. The Plant Cell, 1992, 4: 1443-1451.
[34] Gómez-Cadenas A, Zentella R, Walker-Simmons M K, Ho T H D. Gibberellin/abscisic acid antagonism in barley aleurone cells: Site of action of the protein kinase PKABA1 in relation to gibberellin signaling molecules. The Plant Cell, 2001, 13: 667-679.
[35] Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya Y. Abscisic acid and the control of seed dormancy and germination. Seed Science Research, 2010, 20: 55-67.
[36] Yamaguchi S. Gibberellin metabolism and its regulation. Annual Review of Plant Biology, 2008, 59: 225-251.
[37] Morris K, Linkies A, Müller K, Oracz K, Wang X, Lynn J R, Leubner-Metzger G, Finch-Savage W E. Regulation of seed germination in the close Arabidopsis relative Lepidium sativum: A global tissue-specific transcript analysis. Plant Physiology, 2011, 155(4): 1851-1870.
[38] Oh E, Yamaguchi S, Hu J, Yusuke J, Jung B, Paik I, Lee H S, Sun T P, Kamiya Y, Choi G. PIL5, a phytochrome-interacting bHLH protein,regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. The Plant Cell, 2007, 19: 1192-1208.
[39] Seo M, Hanada A, Kuwahara A, Endo A, Okamoto M, Yamauchi Y, North H, Marion-Poll A, Sun T P, Koshiba T, Kamiya Y, Yamaguchi S, Nambara E. Regulation of hormone metabolism in Arabidopsis seeds: Phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism. The Plant Journal, 2006, 48: 354-366.
[40] Linkies A, Müller K, Morris K, Turecková V, Wenk M, Cadman C S, Corbineau F, Strnad M, Lynn J R, Finch-Savage W E, Leubner- Metzger G. Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: A comparative approach using Lepidium sativum and Arabidopsis thaliana.The Plant Cell, 2009, 21: 3803-3822.
[41] Subbiah V, Reddy K J. Interactions between ethylene, abscisic acid and cytokinin during germination and seedling establishment in Arabidopsis. Journal of Biosciences, 2010, 35: 451-458.
[42] Chiwocha S D S, Cutler A J, Abrams S R, Ambrose S J, Yang J, Ross A R S, Kermode A R. The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. The Plant Journal, 2005, 42: 35-48.
[43] Belin C, Megies C, Hauserova E, Lopez-Molina L. Abscisic acid represses growth of the Arabidopsis embryonic axis after germination by enhancing auxin signaling. The Plant Cell, 2009, 21: 2253-2268.
[44] Preston J, Tatematsu K, Kanno Y, Hobo T, Kimura M, Jikumaru Y, Yano R, Kamiya Y, Nambara E. Temporal expression patterns of hormone metabolism genes during imbibition of Arabidopsis thaliana seeds: A comparative study on dormant and non-dormant accessions. Plant and Cell Physiology, 2009, 50: 1786-1800.
[45] Lee S, Kim S G, Park C M. Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytologist, 2010, 188: 626-637.
[46] Rajjou L, Belghazi M, Huguet R, Robin C, Moreau A, Job C, Job D. Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiology, 2006, 141: 910-923.
[47] Dave A, Hernández M L, He Z, Andriotis V M, Vaistij F E, Larson T R, Graham I A. 12-oxo-phytodienoic acid accumulation during seed development represses seed germination in Arabidopsis.The Plant Cell, 2011, 23: 583-599.
[48] Liu X D, Zhang H, Zhao Y, Feng Z Y, Li Q, Yang H Q, Luan S, Li J M, He Z H. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(38): 15485-15490.
[49] Carrier D J, Kendall E J, Bock C A, Cunningham J E, Dunstan D I. Water content, lipid deposition, and (+)-abscisic acid content in developing white spruce seeds. Journal of Experimental Botany, 1999, 50: 1359-1364.
[50] Terskikh V V, Feurtado J A, Ren C, Abrams S R, Kermode A R. Water uptake and oil distribution during imbibition of seeds of western pine (Pinus monticola Dougl. ex D. Don) monitored in vivo using magnetic resonance imaging. Planta, 2005, 221: 17-27.
[51] Bewley J D. Breaking down the walls: A role for endo-β-mannanase in release from seed dormancy? Trends in Plant Science, 1997, 2: 464-469.
[52] International rules for seed testing. Zurich, International Seed Testing Association, 2006.
[53] Wolters H, Jurgens G. Survival of the flexible: Hormonal growth control and adaptation in plant development. Nature Reviews Genetics, 2009, 10: 305-317.
[54] Fu X, Harberd N P. Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature, 2003, 421: 740-743.
[55] Waterworth W M, Masnavi G, Bhardwaj R M, Jiang Q, Bray C M, West C E. A plant DNA ligase is an important determinant of seed longevity. The Plant Journal, 2010, 63: 848-860.
[56] Hunt L, Holdsworth M J, Gray J E. Nicotinamidase activity is important for germination. The Plant Journal, 2007, 51: 341-351.
[57] Macovei A, Balestrazzi A, Confalonieri M, Faé M, Carbonera D. New insights on the barrel medic MtOGG1 and MtFPG functions in relation to oxidative stress response in planta and during seed imbibition. Plant Physiology and Biochemistry, 2011, 49: 1040-1050.
[58] Ogé L, Bourdais G, Bove J, Collet B, Godin B, Granier F, Boutin J P, Job D, Jullien M, Grappin P. Protein repair L-isoaspartyl methyltransferase1 is involved in both seed longevity and germination vigor in Arabidopsis. The Plant Cell, 2008, 20: 3022-3037.
[59] 宋松泉, 程红焱, 姜孝成. 种子生物学. 北京: 科学出版社, 2008: 154-164.
Song S Q, Cheng H Y, Jiang X C. Seed Biology. Beijing: Science Press, 2008: 154-164. (in Chinese)
[60] Jisha K C,Vijayakumari K, Puthur Jos T.Seed priming for abiotic stress tolerance: An overview. Acta Physiologiae Plantarum, 2013, 35: 1381-1396.
[61] Catusse J, Meinhard J, Job C, Strub J M, Fischer U, Pestsova E, Westhoff P, Dorsselaer A V, Job D. Proteomics reveals potential biomarkers of seed vigor in sugarbeet. Proteomics, 2011, 11: 1569-1580.
[62] Kimura M, Nambara E. Stored and neosynthesized mRNA in Arabidopsis seeds: Effects of cycloheximide and controlled deterioration treatment on the resumption of transcription during imbibition. Plant Molecular Biology, 2010, 73: 119-129.
[63] Rajjou L, Gallardo K, Debeaujon I, Vandekerckhove J, Job C, Job D. The effect of alpha-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiology, 2004, 134: 1598-1613.
[64] El-Maarouf-Bouteau H, Bailly C. Oxidative signaling in seed germination and dormancy. Plant Signaling and Behavior, 2008, 3: 332-341.
[65] Barba-Espín G, Diaz-Vivancos P, Clemente-Moreno M J, Albacete A, Faize L, Faize M, Pérez-Alfocea F, Hernández J A. Interaction between hydrogen peroxide and plant hormones during germination and the early growth of pea seedlings.Plant Cell and Environment,2010, 33: 981-994.
[66] Barba-Espín G, Diaz-Vivancos P, Job D, Belghazi M, Job C, Hernández J A. Understanding the role of H2O2 during pea seed germination: a combined proteomic and hormone profiling approach. Plant Cell and Environment, 2011, 34: 1907-1919.
[67] Barba-Espín G, Clemente M M J, Nicolas E, Almansa M S, Cantero E, Albacete A, Hernandez J A, Diaz-Vivancos P. Role of thioproline on seed germination: Interaction ROS-ABA and effects on antioxidative metabolism. Plant Physiology and Biochemistry, 2012, 59: 30-36.
[68] Bahin E, Bailly C, Sotta B, Kranner I, Corbineau F, Leymarie J. Crosstalk between reactive oxygen species and hormonal signalling pathway regulates grain dormancy in barley. Plant Cell and Environment, 2011, 34: 980-993.
[69] Ishibashi Y, Koda Y, Zheng S H, Yuasa T, Iwaya-Inoue M. Regulation of soybean seed germination through ethylene production in response to reactive oxygen species. Annals of Botany, 2013, 111: 95-102.
[70] Fulgosi H, Soll J, Maraschin S F, Korthout H A A J, Wang M, Testerink C. 14-3-3 proteins and plant development. Plant Molecular Biology, 2002, 50: 1019-1029.
[71] Feng Y, Liu D, Yao H, Wang J. Solution structure and mapping of a very weak calcium-binding site of human translationally controlled tumor protein by NMR. Archives of Biochemistry and Biophysics, 2007, 467: 48-57.
[72] Ramachandran S, Christensen H E, Ishimaru Y, Dong C H, Chao M W, Cleary A L. Profilin plays a role in cell elongation, cell shape maintenance, and flowering in Arabidopsis. Plant Physiology, 2000, 124: 1637-1647.
[73] Kandasamy M K, Burgos-Rivera B, McKinney E C, Ruzicka D R. Class-specific interaction of profilin and ADF isovariants with actin in the regulation of plant development. The Plant Cell, 2007, 19: 3111-3126.
[74] Job C, Rajjou L, Lovigny Y, Belghazi M, Job D. Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiology, 2005, 138: 790-802.
[75] Kranner I, Roach T, Beckett R P, Whitaker C, Minibayeva F V. Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum. Journal of Plant Physiology, 2010, 167: 805-811.
[76] Buchanan B B, Balmer Y. Redox regulation: A broadening horizon. Annual Review of Plant Biology, 2005, 56: 187-220.
[77] Lozano R M, Wong J H, Yee B C, Peters A, Kobrehel K, Buchanan B B. New evidence for a role of thioredoxin h in germination and seedling development. Planta, 1996, 200: 100-106.
[78] Griffith O W. Mammalian sulfur amino acid metabolism: An overview. Methods in Enzymology, 1987, 143: 366-376.
[79] Ravanel S, Gakière G, Job D, Douce R. The specific features of methionine biosynthesis and metabolism in plants. Proceedings of the National Academy of Sciences of the United States of America, 2008, 95: 7805-7812.
[80] Ravanel S, Job D, Douce R. Purification and properties of cystathionine beta-lyase from Arabidopsis thaliana overexpressed in Escherichia coli. Biochemical Journal, 1996, 320: 383-392.
[81] Kim S T, Kang S Y, Wang Y, Kim S G, Hwang D H, Kang K Y. Analysis of embryonic proteome modulation by GA and ABA from germination rice seeds. Proteomics, 2008, 8: 3577-3587.
[82] Kim S T, Wang Y, Kang S Y, Kim S G, Rakwal R, Kim Y C, Kang K Y. Developing rice embryo proteomics reveals essential role for embryonic proteins in regulation of seed germination. Journal of Proteome Research, 2009, 8: 3598-3605.
[83] Gallardo K, Job C, Groot S P C, Puype M, Demol H, Vandekerckhove J, Job D. Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiology, 2001, 126: 835-848.
[84] Gallardo K, Job C, Groot S P C, Puype M, Demol H, Vandekerckhove J, Job D. Importance of methionine biosynthesis for Arabidopsis seed germination and seedling growth. Physiologia Plantarum, 2002, 116: 238-247.
[85] Gallardo K, Job C, Groot S P C, Puype M, Demol H, Vandekerckhove J, Job D. Proteomics of Arabidopsis seed germination: A comparative study of wild-type and gibberellin-deficient seeds. Plant Physiology, 2002, 129: 823-837.
[86] Fulne?ek J, Matyášek R, Votruba I, Holý A, K?í?ová K, Kova?ík A. Inhibition of SAH-hydrolase activity during seed germination leads to deregulation of flowering genes and altered flower morphology in tobacco. Molecular Genetics and Genomics, 2011, 285: 225-236.
[87] Bassel G W, Fung P, Chow T F F, Foong J A, Provart N J, Cutler S R. Elucidating the germination transcriptional program using small molecules. Plant Physiology, 2008, 147: 143-155.
[88] Holman T J, Jones P D, Russell L, Medhurst A, Ubeda Tomás S, Talloji P, Marquez J, Schmuths H, Tung S A, Taylor I, Footitt S, Bachmair A, Theodoulou F L, Holdsworth M J. The N-end rule pathway promotes seed germination and establishment through removal of ABA sensitivity in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106: 4549-4554.
[89] Kim J Y, Kwak K J, Jung H J, Lee H J, Kang H. MicroRNA402 affects seed germination of Arabidopsis thaliana under stress conditions via targeting DEMETER-like protein3 mRNA. Plant and Cell Physiology, 2010, 51: 1079-1083.
[90] Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E. Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. The Plant Journal,2005, 41: 697-709.
[91] Zhang H, Rider S D, Henderson J T, Fountain M, Chuang K, Kandachar V, Simons A, Edenberg H J, Romero-Severson J, Muir W M, Ogas J. The CHD3 remodeler PICKLE promotes trimethylation of histone H3 Lysine 27. Journal of Biological Chemistry, 2008, 283: 22637-22648.
[92] Wu F Q, Xin Q, Cao Z, Liu Z Q, Du SY, Mei C, Zhao C X, Wang X F, Shang Y, Jiang T, Zhang X F, Yan L, Zhao R, Cui Z N, Liu R, Sun H L, Yang X L, Su Z, Zhang D P. The magnesium-chelatase H subunit binds abscisic acid and functions in abscisic acid signaling: New evidence in Arabidopsis. Plant Physiology, 2009, 150:1940-1954.
[93] Sawicki A,Willows R D. BchJ and BchM interact in a 1:1 ratio with the magnesium chelatase BchH subunit of Rhodobacter capsulatus. Febs Journal, 2010, 277: 4709-4721.
[94] Pontier D, Albrieux C, Joyard J, Lagrange T, Block M A. Knock-out of the magnesium protoporphyrin IX methyltransferase gene in Arabidopsis: effects on chloroplast development and on chloroplastto- nucleus signaling. Journal of Biological Chemistry, 2007, 282: 2297-2304.
[95] Song M S, Kim D G, Lee S H. Isolation and characterization of a jasmonic acid carboxyl methyltransferase gene from hot pepper (Capsicum annuum L.). Journal of Plant Biology, 2005, 48: 292-297.
[96] Varbanova M, Yamaguchi S, Yang Y, McKelvey K, Hanada A, Borochov R, Yu F, Jikumaru Y, Ross J, Cortes D, Ma C J, Noel J P, Mander L, Shulaev V, Kamiya Y, Rodermel S, Weiss D, Pichersky E. Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2. The Plant Cell,2007, 19: 32-45.
[97] Xing S F, Qin G J, Shi Y, Ma Z Q, Chen Z L, Gu H Y, Qu L J. GAMT2 encodes a methyltransferase of gibberellic acid that is involved in seed maturation and germination in Arabidopsis. Journal of Integrative Plant Biology, 2007, 49: 368-381.
[98] Zhao N, Ferrer J L, Ross J, Guan J, Yang Y, Pichersky E, Noel J P, Chen F. Structural, biochemical, and phylogenetic analyses suggest that indole-3-acetic acid methyltransferase is an evolutionarily ancient member of the SABATH family. Plant Physiology, 2008, 146: 455-467.
[99] Huizinga D H, Omosegbon O, Omery B, Crowell D N. Isoprenylcysteine methylation and demethylation regulate abscisic acid signaling in Arabidopsis. The Plant Cell, 2008, 20: 2714-2728.
[100] Takahashi H, Kopriva S, Giordano M, Saito K, Hell R. Sulfur assimilation in photosynthetic organisms: Molecular functions and regulations of transporters and assimilatory enzymes. Annual Review of Plant Biology, 2011, 62: 157-184.
[101] Apel K, Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 2004, 55: 373-399.
[102] Oracz K, El-Maarouf-Bouteau H, Kranner I, Bogatek R, Corbineau F, Bailly C. The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. Plant Physiology, 2009, 150: 494-505.
[103] Hwang I T, Choi J S, Song H Y, Cho S J, Lim H K, Park N J, Lee D H. Validation of 7-keto-8-aminopelargonic acid synthase as a potential herbicide target with lead compound triphenyltin acetate. Pesticide Biochemistry and Physiology, 2010, 97: 24-31.
[104]Alban C, Job D, Douce R. Biotin metabolism in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 2000, 51: 17-47.
[105] Leustek T, Martin M N, Bick J A, Davies J P. Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annual Review of Plant Physiology and Plant Molecular Biology, 2000, 51: 141-165.
[106] Hawkesford M J, Wray J L. Molecular genetics of sulfate assimilation. Advances in Botanical Research, 2000, 33: 159-223.
[107] Bick J A, Leustek T. Plant sulfur metabolism-the reduction of sulfate to sulfite. Current Opinion in Plant Biology, 1998, 1: 240-244.
[108] Ravina C G, Chang C I, Tsakraklides G P, McDermott J P, Vega J M, Leustek T, Gotor C, Davies J P. The sac mutants of chlamydomonas reinhardtii reveal transcriptional and posttranscriptional control of cysteine biosynthesis. Plant Physiology, 2002, 130: 2076-2084.
[109] Kopriva S. Regulation of sulfate assimilation in Arabidopsis and beyond. Annals of Botany, 2006, 97: 479-495.
[110] Kopriva S, Mugford S G, Matthewman C, Koprivova A. Plant sulfate as similation genes: Redundancy versus specialization. Plant Cell Reports, 2009, 28: 1769-1780.
[111] Bønsager B C, Shahpiri A, Finnie C, Svensson B. Proteomic and activity profiles of ascorbate-glutathione cycle enzymes in germinating barley embryo. Photochemistry, 2010, 71: 1650-1656.
[112] Bethke P C, Libourel I G, Jones R L. Nitric oxide reduces seed dormancy in Arabidopsis. Journal of Experimental Botany, 2006, 57: 517-526.
[113] Grudkowska M, Zagdanska B. Multifunctional role of plant cysteine proteinases. Acta Biochimica Polonica, 2004, 51(3): 609-624.
[114] Mntz K, Blattner F R, Shutov A D. Legumains - a family of asparagine-specific cysteine endopeptidases involved in propolypeptide processing and protein breakdown in plants. Journal of Plant Physiology, 2002, 159(12): 1281-1293.
[115] Jennifer T J, John E M. A salt- and dehydration- inducible pea gene, Cyp15a, encodes a cell wall protein with sequence similarity to cysteine protease. Plant Molecular Biology, 1995, 28: 1055-1065.
[116] Rocha P S C F, Sheikh M, Melchiorre R, Fagard M, Boutet S, Loach R, Moffatt B, Wagner C, Vaucheret H, Furner I. The Arabidopsis HOMOLOGY-DEPENDENT GENE SILENCING1 gene codes for an S-adenosyl-L-homocysteine hydrolase required for DNA methylation- dependent gene silencing.The Plant Cell, 2005, 17: 404-417.
[117] Li C H, Yu N, Jiang S M, Shangguan X X, Wang L J, Chen X Y. Down-regulation of S-adenosyl-Lhomocysteine hydrolase reveals a role of cytokinin in promoting transmethylation reactions. Planta, 2008, 28: 125-136.
[118] Azevedo R A, Arruda P, Turner W L, Lea P J. The biosynthesis and metabolism of the aspartate derived amino acids in higher plants. Phytochemistry, 1997, 46: 395-419.
[119] Bryan A. The aspartate family and branched-chain amino acids// Miflin B J et al. The Biochemistry of Plants, Amino Acids and Derivatives. New York: Academic Press Inc, 1980, 5: 7403-7452.
[120] Angelovici R, Fait A, Fernie A R, Galili G. A seed high-lysine trait is negatively associated with the TCA cycle and slows down Arabidopsis seed germination. New Phytologist, 2011, 189: 148-159.
[121] Oracz K, El-Maarouf Bouteau H, Farrant J M, Cooper K, Belghazi M, Job C, Job D, Corbineau F, Bailly C. ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. The Plant Journal, 2007, 50(3): 452-465.
[122] Davies M J. The oxidative environment and protein damage. Biochimica et Biophysica Acta, 2005, 1703(2): 93-109.
[123] Weissbach H, Resnick L, Brot N. Methionine sulfoxide reductases: History and cellular role in protecting against oxidative damage. Biochimica et Biophysica Acta, 2005, 1703: 203-212.
[124] Sharov V S, Schöneich C. Diastereoselective protein methionine oxidation by reactive oxygen species and diastereoselective repair by methionine sulfoxide reductase. Free Radical Biology and Medicine, 2000, 29: 986-994.
[125] Moskovitz J, Weissbach H, Brot N. Cloning and expression of a mammalian gene involved in the reduction of methionine sulfoxide residues in proteins. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93: 2095-2099.
[126] Dai C, Wang M H. Characterization and functional analysis of methionine sulfoxide reductase A gene family in tomato. Molecular Biology Reports, 2012, 39(5): 6297-6308.
[127] Oh S K, Baek K H, Seong E S, Joung Y H, Choi G J, Park J M, Cho H S, Kim E A, Lee S, Choi D. CaMsrB2, pepper methionine sulfoxide reductase B2, is a novel defense regulator against oxidative stress and pathogen attack. Plant Physiology, 2010, 154(1): 245-261.
[128] Moskovitz J, Bar-Noy S, Williams W M, Requena J, Berlett B S, Stadtman E R. Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(23): 12920-12925.
[129] Ruan H, Tang X D, Chen M L, Joiner M L, Sun G, Brot N, Weissbach H, Heinemann S H, Iverson L, Wu C F, Hoshi T. High-quality life extension by the enzyme peptide methionine sulfoxide reductase. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(5): 2748-2753.
[130] Koc A, Gasch A P, Rutherford J C, Kim H Y, Gladyshev V N. Methionine sulfoxide reductase regulation of yeast lifespan reveals reactive oxygen species-dependent and-independent components of aging. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(21): 7999-8004.
[131] Cabreiro F, Picot C R, Perichon M, Castel J, Friguet B, Petropoulos I. Overexpression of mitochondrial methionine sulfoxide reductase B2 protects leukemia cells from oxidative stress-induced cell death and protein damage.Journal of Biological Chemistry, 2008, 283(24): 16673-16681.
[132] Stadtman E R. Protein oxidation and aging. Free Radical Research, 2006, 40(12): 1250-1258.
[133] Mushegian A R, Koonin E V. A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(19): 10268-10273.
[134]樊廷录, 王淑英, 王建华, 杨珍. 河西制种基地玉米杂交种种子成熟期与种子活力的关系. 中国农业科学, 2014, 47(15): 2960-2970.
Fan T L, Wang S Y, Wang J H, Yang Z. Relationship of days after pollination and vigor traits on maize seed maturity in Hexi seed production area in China. Scientia Agricultura Sinica, 2014, 47(15): 2960- 2970. (in Chinese) |
[1] | 唐玉林, 张博, 任曼, 张瑞雪, 秦俊杰, 朱浩, 郭延生. UPLC-MS/MS代谢组学评价归芪益母口服液对产后奶牛瘤胃的调节作用[J]. 中国农业科学, 2023, 56(2): 368-378. |
[2] | 林馨颖,王鹏杰,杨如兴,郑玉成,陈潇敏,张磊,邵淑贤,叶乃兴. 高茶氨酸茶树新品系‘福黄1号’黄化变异机理[J]. 中国农业科学, 2022, 55(9): 1831-1845. |
[3] | 李青林,张文涛,徐慧,孙京京. 低磷胁迫下黄瓜木质部与韧皮部汁液的代谢物变化[J]. 中国农业科学, 2022, 55(8): 1617-1629. |
[4] | 闫乐乐,卜璐璐,牛良,曾文芳,鲁振华,崔国朝,苗玉乐,潘磊,王志强. 广泛靶向代谢组学解析桃蚜危害对桃树次生代谢产物的影响[J]. 中国农业科学, 2022, 55(6): 1149-1158. |
[5] | 彭佳堃, 戴伟东, 颜涌泉, 张悦, 陈丹, 董明花, 吕美玲, 林智. 基于代谢组学的‘永春佛手’乌龙茶化学成分解析[J]. 中国农业科学, 2022, 55(4): 769-784. |
[6] | 赫磊,路凯,赵春芳,姚姝,周丽慧,赵凌,陈涛,朱镇,赵庆勇,梁文化,王才林,朱丽,张亚东. 水稻穗顶端退化突变体paa21的表型分析及基因克隆[J]. 中国农业科学, 2022, 55(24): 4781-4792. |
[7] | 王朝,方东路,张攀容,姜雯,裴斐,胡秋辉,马宁. 基于TMT定量蛋白质组学揭示纳米包装双孢蘑菇采后冷藏生理代谢规律[J]. 中国农业科学, 2022, 55(23): 4728-4742. |
[8] | 刘鑫,张亚红,袁苗,党仕卓,周娟. ‘红地球’葡萄花芽分化过程中的转录组分析[J]. 中国农业科学, 2022, 55(20): 4020-4035. |
[9] | 沙月霞, 黄泽阳, 马瑞. 嗜碱假单胞菌Ej2对稻瘟病的防治效果及对水稻内源激素的影响[J]. 中国农业科学, 2022, 55(2): 320-328. |
[10] | 马玉峰,周忠雄,李雨桐,高雪琴,乔亚丽,张文斌,颉建明,胡琳莉,郁继华. 氮素水平及形态对娃娃菜根系特征及生理指标的影响[J]. 中国农业科学, 2022, 55(2): 378-389. |
[11] | 周桂盈,杨晓敏,滕子文,孙丽娟,郑长英. 螺虫乙酯抑制西花蓟马卵孵化的蛋白质组学分析[J]. 中国农业科学, 2022, 55(15): 2938-2948. |
[12] | 李昂,苗玉乐,孟君仁,牛良,潘磊,鲁振华,崔国朝,王志强,曾文芳. 溶质和硬质型桃果实成熟过程果肉多肽组学分析[J]. 中国农业科学, 2022, 55(11): 2202-2213. |
[13] | 张静,张姬越,岳永起,赵丹,范依琳,马妍,熊燕,熊显荣,字向东,李键,杨丽雪. LKB1基因对卵巢颗粒细胞类固醇激素生成相关基因的调控作用[J]. 中国农业科学, 2022, 55(10): 2057-2066. |
[14] | 郭永春, 王鹏杰, 金珊, 侯炳豪, 王淑燕, 赵峰, 叶乃兴. 基于WGCNA鉴定茶树响应草甘膦相关的基因共表达模块[J]. 中国农业科学, 2022, 55(1): 152-166. |
[15] | 许晨,王文静,曹珊,李如雪,张贝贝,孙爱清,张春庆. 花后DA-6处理调控小麦种子活力的机理[J]. 中国农业科学, 2021, 54(9): 1821-1834. |
|