? Evaluation of Chinese rice varieties resistant to the root-knot nematode <em>Meloidogyne graminicola</em>
Quick Search in JIA      Advanced Search  
    2018, Vol. 17 Issue (03): 621-630     DOI: 10.1016/S2095-3119(17)61802-1
Plant Protection Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Evaluation of Chinese rice varieties resistant to the root-knot nematode Meloidogyne graminicola
Zhan Li-ping1, Ding Zhong2, Peng De-liang1, Peng Huan1, Kong Ling-an1, Liu Shi-ming1, Liu Ying1, Li Zhong-cai3, HUANG Wen-kun1  
1 State Key Laboratory for Biology of Plant Diseases and Insect Pests/Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
2 College of Plant Protection, Hunan Agricultural University, Changsha 410128, P.R.China
3 Agriculture Bureau of Hanshou County, Hunan Province, Changde 415900, P.R.China
 Download: PDF in ScienceDirect (0 KB)   HTML (1 KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract The root-knot nematode Meloidogyne graminicola, which is distributed worldwide, is considered a major constraint on rice production in Asia.  The present study used the root gall index and number of nematodes inside the roots to evaluate resistance/susceptibility to M. graminicola in different subpopulations of Oryza sativa (aus, hybrid aus, indica, hybrid indica, temperate japonica, tropical japonica).  Nematode development in highly resistant varieties was also evaluated.  Analyses of randomly selected 35 varieties showed the number of M. graminicola nematodes inside the roots correlated very strongly (r=0.87, P≤0.05) with the nematode gall index, and the results from pot and field experiments revealed similar rankings of the varieties for resistance/susceptibility.  Among the 136 tested varieties, temperate japonica displayed the highest gall index, followed by tropical japonica, indica, hybrid indica, aus, and hybrid aus. Zhonghua 11 (aus), Shenliangyou 1 (hybrid aus) and Cliangyou 4418 (hybrid indica) were highly resistant to M. graminicola under both pot and field conditions.  Further examination of nematode development suggested that compared to susceptible rice, M. graminicola penetrated less often into highly resistant varieties and more frequently failed to develop into females.  The promising varieties found in the present research might be useful for the breeding of hybrid rice in China and for the further development of practical nematode management measures.   
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
Articles by authors
Key wordsMeloidogyne graminicola     rice varieties     resistant     susceptible     resistance evaluation     
Received: 2017-07-25; Published: 2017-10-30

This work was financially supported by the grants from the National Natural Science Foundation of China (31571986) and the National Basic Research Programme of China (2013CB127502).

Corresponding Authors: Correspondence HUANG Wen-kun,Tel: +86-10-62813082,E-mail: wkhuang2002@163.com   
About author: ZHAN Li-ping, E-mail: zhan_liping@163.com;
Cite this article:   
Zhan Li-ping, Ding Zhong, Peng De-liang, Peng Huan, Kong Ling-an, Liu Shi-ming, Liu Ying, Li Zhong-cai, HUANG Wen-kun. Evaluation of Chinese rice varieties resistant to the root-knot nematode Meloidogyne graminicola[J]. Journal of Integrative Agriculture, 2018, 17(03): 621-630.
http://www.chinaagrisci.com/Jwk_zgnykxen/EN/10.1016/S2095-3119(17)61802-1      or     http://www.chinaagrisci.com/Jwk_zgnykxen/EN/Y2018/V17/I03/621
[1] Aanwar S A, Mckenry M V. 2000. Penetration, development and reproduction of Meloidogyne arenaria on two new resistant Vitis spp. Nematropica, 30, 9-17.
[2] Anwar S A, Trudgill D L, Philipps M S. 1994. The contribution of variation in invasion and development rates of Meloidogyne incognita to host status differences. Nematologica, 40, 579-586.
[3] Arayarungsarit L. 1987. Yield ability of rice varieties in fields infested with the root-knot nematode. International Rice Research Newsletter, 12, 14.
[4] Bird D M, Koltai H. 2000. Plant parasitic nematodes: Habitats, hormones and horizontally-acquired genes. Journal of Plant Growth Regulation, 19, 183-194.
[5] Bridge J, Plowright R A, Peng D. 2005. Nematode parasites of rice. In: Luc M, Sikora R A, Bridge J, eds., Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. CABI Publishing, Wallingford, UK. pp. 87-130.
[6] Cabasan M T N, Kumar A, Waele D. 2012. Comparison of migration, penetration, development and reproduction of Meloidogyne graminicola on susceptible and resistant rice genotypes. Nematology, 14, 405-415.
[7] Chang T. 1976. The origin, evolution, cultivation, dissemination, and diversification of Asian and African rices. Euphytica, 25, 425-441.
[8] Chang T T. 2003. Origin, domestication, and diversification In: Smith C W, Dilday R H, eds., Rice: Origin, History, Technology, and Production. J. Wiley and Sons, New Jersey. pp. 3-25.
[9] Cheng S H, Zhuang J Y, Fan Y Y, Du J H, Cao L Y. 2007. Progress in research and development on hybrid rice: A super-domesticate in China. Annals of Botany, 100, 959-966.
[10] Dimkpa S O N, Lahari Z, Shrestha R, Douglas A, Gheysen G, Price A. 2016. A genome-wide association study of a global rice panel reveals resistance in Oryza sativa to root-knot nematodes. Journal of Experimental Botany, 67, 1191-1200.
[11] Dutta T K, Ganguly A K, Gaur H S. 2012. Global status of rice root-knot nematode, Meloidogyne graminicola. African Journal of Microbiology Research, 6, 6016-6021.
[12] Garris A J, Tai T H, Coburn J, Kresovich S, McCouch S. 2005. Genetic structure and diversity in Oryza sativa L. Genetics, 169, 1631-1638.
[13] Gheysen G, Jones J T. 2006. Molecular Aspects of Plant-Nematode Interactions in Plant Nematology. CABI Publishing, Wallingford, UK. pp. 234-254.
[14] Gheysen G, Mitchum M G. 2011. How nematodes manipulate plant development pathways for infection. Current Opinion in Plant Biology, 14, 415-421.
[15] Glaszmann J C. 1987. Isozymes and classification of Asian rice varieties. Theoretical and Applied Genetics, 74, 21-30.
[16] Huang J S. 1985. Mechanisms of resistance to root-knot nematodes. In: Sasser J N, Carter C C, eds., An Advanced Treatise on Meloidogyne. vol. 1. Biology and Control. North Carolina State University, USA. pp. 165-174.
[17] Huang K. 2011. The studies on pathogenicity of Meloidogyne graminicola to different rice cultivars and biological characteristics. MSc thesis, South China Agricultural University. pp. 17-20. (in Chinese)
[18] Huang W K, Ji H L, Gheysen G, Debode J, Kyndt T. 2015. Biochar-amended potting medium reduces the susceptibility of rice to root-knot nematode infections. BMC Plant Biology, 15, 267.
[19] Ji H, Gheysen G, Denil S, Lindsey K, Topping J F, Nahar K, Haegeman A, De Vos Winnok H, Trooskens G, Van Criekinge W, De Meyer T, Kyndt T. 2013. Transcriptional analysis through RNA sequencing of giant cells induced by Meloidogyne graminicola in rice roots. Journal of Experimental Botany, 64, 3885-3898.
[20] Jena R N, RaoY S. 1977. Nature of resistance in rice (Oryza sativa L.) to the root-knot nematode (Meloidogyne graminicola Golden and Birchfield). II. Mechanism of resistance. Proceedings of the Indian Academy of Sciences, 86, 31-38.
[21] Karczmarek A, Overmars H, Helder J, Goverse A. 2004. Feeding cell development by cyst and root-knot nematodes involves a similar early, local and transient activation of a specific auxin-inducible promoter element. Molecular Plant Pathology, 5, 343-346.
[22] Khanam S, Akanda A M, Ali M A, Kyndt T, Gheysen G. 2016. Identification of Bangladeshi rice varieties resistant to ufra disease caused by the nematode Ditylenchus Angustus. Crop Protection, 79, 162-169.
[23] Kong L A, Wu D Q, Cui J K, Huang W K, Peng H, Peng D L. 2016. Testing and modelling the potential of three diploid plants in Poaceae as a new pathosystem to investigate the interactions between cereal hosts and cereal cyst nematode (Heterodera avenae). Plant Pathology, 65, 682-688.
[24] Kumari C, Dutta T K, Banakar P, Rao U. 2016. Comparing the defence-related gene expression changes upon root-knot nematode attack in susceptible versus resistant cultivars of rice. Scientific Reports, 6, 22846.
[25] Kyndt T, Denil S, Haegeman A, Trooskens G, Bauters L, Van Criekinge W, De Meyer T, Gheysen G. 2012. Transcriptional reprogramming by root knot and migratory nematode infection in rice. New Phytologist, 196, 887-900.
[26] Kyndt T, Fernandez D, Gheysen G. 2014. Plant-parasitic nematode infections in rice: Molecular and cellular insights. Annual Review of Phytopathology, 52, 135-153.
[27] Kyndt T, Vieira P, Gheysen G, De Almeida-Engler J. 2013. Nematode feeding sites: Unique organs in plant roots. Planta, 238, 807-818.
[28] Moura R M, Davis E L, Luzzi B M, Boerma H R, Hussey R S. 1993. Post-infectional development of Meloidogyne incognita on susceptible and resistant soybean genotypes. Nematropica, 23, 7-13.
[29] Nahar K, Kyndt T, Hause B, Höfte M, Gheysen G. 2013. Brassinosteroids suppress rice defense against root-knot nematodes through antagonism with the jasmonate pathway. Molecular Plant Microbe Interaction, 26, 106-115.
[30] Nahar K, Kyndt T, De Vleesschauwer D, Höfte M, Gheysen G. 2011. The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice. Plant Physiology, 157, 305-316.
[31] Noe J P. 1991. Development of Meloidogyne arenaria on peanut and soybean under two temperature cycles. Journal of Nematology, 23, 468-476.
[32] Patil J, Gaur H S. 2014. The effect of root-knot nematode, Meloidogyne graminicola, on the quality and vigour of rice seed. Nematology, 16, 555-564.
[33] Pederson G A, Windham G L. 1989. Resistance to Meloidogyne incognita in trifolium interspecific hybrids and species related to white clover. Plant Disease, 73, 567-569.
[34] Pedrosa E M R, Hussey R S, Boerma H R. 1996. Penetration and post-infectional development and reproduction of Meloidogyne arenaria races 1 and 2 on susceptible and resistant soybean genotypes. Journal of Nematology, 28, 343-351.
[35] Prasad J S, Vijayakumar C H M, Sankar M, Varaprasad K S, Srinivasa P M, Kondala R Y. 2006. Root-knot nematode resistance in advanced back cross populations of rice developed for water stress conditions. Nematologia Mediterranea, 34, 3-8.
[36] Priya M S, Subramanian S. 2013. Comparison of migration, penetration, development, reproduction and histological responses of rice root knot nematode, Meloidogyne graminicola between susceptible (CO47) and moderately resistant (ADT 45) rice varieties. The Madras Agricultural Journal, 100, 743-744.
[37] Rahman M L. 1990. Effect of different cropping sequences on the root-knot nematode, Meloidogyne graminicola, and yield of deepwater rice. Nematologia Mediterranea, 18, 213-217.
[38] Reversat G, Boyer J, Pando-Bahuon A, Sannier C. 1999. Use of a mixture of sand and water-absorbent synthetic polymer as substrate for the xenic culturing of plant-parasitic nematodes in the laboratory. Nematology, 1, 209-212.
[39] Richards D E, King K E, Ait-ali T, Harberd N P. 2001. How gibberellin regulates plant growth and development: A molecular genetic analysis of gibberellin signaling. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 67-88.
[40] Schatz M C, Maron L G, Stein J C, Wences A H, Gurtowski J, Biggers E, Lee H, Kramer M, Antoniou E, Ghiban E, Wright M H, Chia J, Ware D, McCouch S R, McCombie W R. 2014. Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica. Genome Biology, 15, 506.
[41] Sharma-Poudyal D, Pokharel R, Shrestha S M, Khatri-Chhetri G B. 2004. Evaluation of common Nepalese rice cultivars against rice root knot nematode. Nepal Agriculture Research Journal, 5, 33-36.
[42] Shrestha R, Uzzo F, Wilson M J, Price A H. 2007. Physiological and genetic mapping study of tolerance to root-knot nematode in rice. New Phytologist, 176, 665-672.
[43] Soriano I R, Reversat G. 2003. Management of Meloidogyne graminicola and yield of upland rice in South-Luzon, Philippines. Nematology, 5, 879-884.
[44] Soriano I R, Schmit V, Brar D S, Prot J C, Reversat G. 1999. Resistance to rice root-knot nematode Meloidogyne graminicola identified in Oryza longistaminata and
[45] O. glaberrima. Nematology, 1, 395-398.
[46] Trudgill D L. 1991. Resistance to and tolerance of plant parasitic nematodes in plants. Annual Review of Phytopathology, 29, 167-192.
[47] Ventura W, Watanabe I, Castillo M B, De la Cruz A. 1981. Involvement of nematodes in the soil sickness of a dryland rice-based cropping system. Soil Science & Plant Nutrition, 27, 305-315.
[48] Yuan L P. 1994. Increasing yield potential in rice by exploitation of heterosis. In: Virmani S S, ed., Hybrid Rice Technology, New Developments and Future Prospects. International Rice Research Institute, Philippines. pp. 1-6.
[49] De Waele D, Das K, Zhao D, Tiwari R K S, Shrivastava D K, Vera-Cruz C, Kumar A. 2013. Host response of rice genotypes to the rice root-knot (Meloidogyne graminicola) under aerobic conditions. Archives of Phytopathology & Plant Protection, 46, 670-681.
[50] Wang C, Ulloa M, Mullens T R, Yu J Z, Roberts P A. 2012. QTL analysis for transgressive resistance to root-knot nematode in interspecific cotton (Gossypium spp.) progeny derived from susceptible parents (Gossypium spp.). PLoS ONE, 7, e34874.
[51] Wei H H, Li C, Xing Z P, Wang W T, Dai Q G, Zhou G S, Wang L, Xu K, Huo Z Y, Guo B W, Wei H Y, Zhang H C. 2016. Suitable growing zone and yield potential for late-maturity type of Yongyou Japonica/indica hybrid rice in the lower reaches of Yangtze River, China. Journal of Integrative Agriculture, 15, 50-62. 浏览
[52] Williamson V M, Hussey R S. 1996. Nematode pathogenesis and resistance in plants. The Plant Cell, 8, 1735-1745.
[53] Zhao K, Wright M, Kimball J, Eizenga G, McClung A, Kovach M, Tyagi W, Ali M L, Tung C W, Reynolds A, Bustamante C D, McCouch S R. 2010. Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. PLoS ONE, 5, e10780.
[54] Zhu D, Zhang H, Guo B, Xu K, Dai Q, Wei C, Zhou G, Huo Z. 2017. Physicochemical properties of indica-japonica hybrid rice starch from Chinese varieties. Food Hydrocolloids, 63, 356-363.
No Similar of article
Copyright © 2015 ChinaAgriSci.com, All Rights Reserved
Chinese Academy of Agricultural Sciences (CAAS) No. 12 South Street, Zhongguancun, Beijing 100081, P. R. China
http://www.ChinaAgriSci.com   JIA E-mail: jia_journal@caas.cn