Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Characterization of laccase gene StLAC6 involved in the pathogenicity and peroxisome function in Setosphaeria turcica
LIU Ning, ZHANG Qian-qian, JIA Hui, ZHAO Bin, ZHU Zi-ping , CAO Zhi-yan, DONG Jin-gao
2022, 21 (7): 2019-2030.   DOI: 10.1016/S2095-3119(21)63855-8
Abstract312)      PDF in ScienceDirect      

Laccases, as a kind of multicopper oxidase, play an important role in pigment synthesis and growth in fungi and are involved in their interactions with host plants.  In Setosphaeria turcica, 9 laccase-like multicopper oxidases have been identified, and StLAC2 is involved in the synthesis of the melanin that accumulates in the cell wall.  The function of another major laccase gene, StLAC6, was studied here.  The knockout of StLAC6 had no effect on the growth, morphology or invasion ability of S. turcica, but the morphology and function of peroxisomes of knockout mutants were abnormal.  The knockout of the StLAC6 gene resulted in increased contents of phenolic compounds and melanin and the sensitivity to fungicides increased compared with wild type strains.  In the mutants of StLAC6, there is a significant change of the expression levels of other laccase genes.  This study provides a new insight into laccase functions and the relationship of the laccase gene family in plant pathogenic fungi.   

Reference | Related Articles | Metrics
Creation of two hyperactive variants of phytochrome B1 for attenuating shade avoidance syndrome in maize
ZHAO Yong-ping, ZHAO Bin-bin, WU Guang-xia, MA Xiao-jing, WANG Bao-bao, KONG De-xin, WEI Hong-bin, WANG Hai-yang
2022, 21 (5): 1253-1265.   DOI: 10.1016/S2095-3119(20)63466-9
Abstract244)      PDF in ScienceDirect      
Increasing the planting density of maize is an effective measure to improve its yield.  However, plants under high planting density tend to trigger shade avoidance syndrome (SAS), reducing lodging resistance and ultimately yield drop.  Phytochrome B
(phyB) plays a dominant role in mediating shade avoidance response.  This study constructed two hyperactive mutated alleles of maize PHYB1: ZmPHYB1Y98F (mimicking Y104F of AtPHYB) and ZmPHYB1Y359F (mimicking Y361F of AtPHYB).  Ectopic expression of ZmPHYB1Y98F and ZmPHYB1Y359F under the control of the ZmPHYB1 promoter in the Arabidopsis phyB-9 background rendered enhanced activity on complementing the phyB-9 related phenotypes compared with ZmPHYB1WT.  Moreover, similar to the behavior of ZmPHYB1WT, ZmPHYB1Y98F and ZmPHYB1Y359F proteins are localized to the nucleus after red light exposure, and could interact with PIF proteins of maize.  In addition, expression of ZmPHYB1Y98F and ZmPHYB1Y359F variants under the control of the native ZmPHYB1 promoter attenuated SAS of maize seedlings subjected to simulated shade treatment.  It effectively reduced mature maize’s plant height and ear height in field conditions.  The results combined demonstrate the utility of ZmPHYB1Y98F and ZmPHYB1Y359F for attenuating SAS and breeding high density-tolerant varieties of maize.

Reference | Related Articles | Metrics
Lignin metabolism regulates lodging resistance of maize hybrids under varying planting density
LI Bin, GAO Fei, REN Bai-zhao, DONG Shu-ting, LIU Peng, ZHAO Bin, ZHANG Ji-wang
2021, 20 (8): 2077-2089.   DOI: 10.1016/S2095-3119(20)63346-9
Abstract220)      PDF in ScienceDirect      
Hybrids and planting density are the main factors affecting maize lodging resistance.  Here, we aimed to elucidate the mechanism of the regulation of maize lodging resistance by comparing two hybrids at various planting densities from the perspective of lignin metabolism.  Our results showed that compared to lodging-susceptible hybrid Xundan 20 (XD20), lodging-resistant hybrid Denghai 605 (DH605) showed a lower center of gravity and culm morphological characteristics that contributed to the higher lodging resistance of this hybrid.  Lignin content, activities of key lignin synthesis-related enzymes and G-, S- and H-type monomer contents were significantly higher in hybrid DH605 than in hybrid XD20.  Stalk mechanical strength, lignin accumulation and enzyme activity decreased significantly with increasing planting density in the two hybrids.  While G-type monomers first decreased with increasing planting density but then remained stable, S-type monomers showed a decreasing trend, and H-type monomers showed an increasing trend.  Correlation analysis showed that lodging rate was significantly correlated with plant traits and lignin metabolism.  Therefore, maize hybrids characterized by high lignin accumulation, high lignin synthesis-related activities, high S-type monomer content, low center of gravity, high stem puncture strength, high cortical thickness, and small vascular bundle area are more resistant to lodging.  High planting densities reduce stalk lignin accumulation, relevant enzyme activities and mechanical strength, thereby, ultimately increasing the lodging rate significantly.
Reference | Related Articles | Metrics
Integrated agronomic practices management improved grain formation and regulated endogenous hormone balance in summer maize (Zea mays L.)
YU Ning-ning, ZHANG Ji-wang, LIU Peng, ZHAO Bin, REN Bai-zhao
2020, 19 (7): 1768-1776.   DOI: 10.1016/S2095-3119(19)62757-7
Abstract139)      PDF in ScienceDirect      
Compared with single agronomic practices management during grain formation, knowledge about integrated agronomic practices management on grain-filling characteristics and physiological function of endogenous hormones was limited.  In order to clarify this issue, two field experiments, integrated agronomic practices management (IAPM), T1 (local conventional cultivation practices), T2 (an optimized combination of cropping systems and fertilizer treatment), T3 (treatment based on high-yield studies), and T4 (further optimized combination of cropping systems and fertilizer treatment), and nitrogen rate testing (NAT) (four nitrogen rates, 0, 129.0, 184.5, and 300.0 kg N ha–1) were performed with summer maize hybrid Zhengdan 958 (ZD958). Results showed that with increased nitrogen rate, the endogenous hormone balance was promoted and the grain-filling characteristics were improved sufficiently to resulting in a significant increase in grain yield.  However, the grain-filling characteristics deteriorated and yield was reduced with excessive nitrogen fertilization.  However, IAPM could promote hormone balance and improve grain filling characteristic.  The indole-3-acetic acid (IAA), zeatin riboside (ZR), and gibberellin (GA3) contents under T2 and T4 treatments were higher and the abscisic acid (ABA) content was lower, and the ZR and GA3 contents under T3 were higher than those under T1.  Those resulted in the maximum grain-filling rate (Wmax) and the active grain-filling period (P) under T2, T3 and T4 were significantly increased than those under T1, and hence promoted kernel weight and grain yield.  So IAPM promoted hormone balance by improving tillage model, optimizing fertilizer rate and fertilization period, appropriately increasing planting density and delaying harvest, which promoted grain filling rate and lengthened active grain-filling period, finally increased grain yield.
Reference | Related Articles | Metrics
Effects of urea mixed with nitrapyrin on leaf photosynthetic and senescence characteristics of summer maize (Zea mays L.) waterlogged in the field
REN Bai-zhao, HU Juan, ZHANG Ji-wang, DONG Shu-ting, LIU Peng, ZHAO Bin
2020, 19 (6): 1586-1595.   DOI: 10.1016/S2095-3119(19)62725-5
Abstract113)      PDF in ScienceDirect      
Waterlogging is one of the major abiotic stresses in agricultural crop production.  However, the application of 2-chloro-6-(trichloromethyl) pyridine (nitrapyrin) can effectually mitigate the losses of nitrogen efficiency and grain yield of summer maize induced by waterlogging.  In order to explore its role to alleviate waterlogging stress on leaf antioxidative system and photosynthetic characteristics of summer maize, a field experiment was executed to research effects of nitrapyrin application on leaf photosynthetic and senescent characteristics of waterlogged summer maize Denghai 605 (DH605) and Zhengdan 958 (ZD958).  Experimental treatments consisted of waterlogging treatment that was applying only urea (WL), waterlogging treatment that was applying urea mixing with nitrapyrin (WL-N), and no waterlogging treatment that was only applying urea (NWL).  Results showed that WL significantly decreased leaf area index (LAI), SPAD, photosynthetic rate (Pn), and protective enzyme activities, accelerated leaf aging, eventually led to a remarkable yield reduction by 38 and 42% for DH605 and ZD958, respectively, compared to NWL.  However, the application of nitrapyrin was useful for relieving waterlogging damages on leaf photosynthetic ability.  LAI, SPAD and Pn of WL-N for DH605 were 10, 19 and 12–24% higher, and for ZD958 were 12, 23 and 7–25% higher, compared to those of WL, respectively.  Moreover, application of nitrapyrin effectually relieved waterlogging losses on antioxidative enzyme activities.  Leaf superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities of WL-N were averagely increased by 24, 15 and 30%, respectively, while malondialdehyde (MDA) content was averagely decreased by 13%, compared to those of WL.  Visibly, nitrapyrin application could improve leaf photosynthetic characteristics and retard leaf aging induced by waterlogging, thereby leading to a yield increase of waterlogged maize.
 
Reference | Related Articles | Metrics
Identification of long-grain chromosome segment substitution line Z744 and QTL analysis for agronomic traits in rice
MA Fu-ying, DU Jie, WANG Da-chuan, WANG Hui, ZHAO Bing-bing, HE Guang-hua, YANG Zheng-lin, ZHANG Ting, WU Ren-hong, ZHAO Fang-ming
2020, 19 (5): 1163-1169.   DOI: 10.1016/S2095-3119(19)62751-6
Abstract118)      PDF in ScienceDirect      
Length of grain affects the appearance, quality, and yield of rice.  A rice long-grain chromosome segment substitution line Z744, with Nipponbare as the recipient parent and Xihui 18 as the donor parent, was identified.  Z744 contains a total of six substitution segments distributed on chromosomes (Chrs.) 1, 2, 6, 7, and 12, with an average substitution length of 2.72 Mb.  The grain length, ratio of length to width, and 1 000-grain weight of Z744 were significantly higher than those in Nipponbare.  The plant height, panicle number, and seed-set ratio in Z744 were significantly lower than those in Nipponbare, but they were still 78.7 cm, 13.5 per plant, and 86.49%, respectively.  Furthermore, eight QTLs of different traits were identified in the secondary F2 population, constructed by Nipponbare and Z744 hybridization.  The grain weight of Z744 was controlled by two synergistic QTLs (qGWT1 and qGWT7) and two subtractive QTLs (qGWT2 and qGWT6), respectively.  The increase in the grain weight of Z744 was caused mainly by the increase in grain length.  Two QTLs were detected, qGL1 and qGL7-3, which accounted for 25.54 and 15.58% of phenotypic variation, respectively.  A Chi-square test showed that the long-grain number and the short-grain number were in accordance with the 3:1 separation ratio, which indicates that the long grain is dominant over the short-grain and Z744 was controlled mainly by the principal effect qGL1.  These results offered a good basis for further fine mapping of qGL1 and further dissection of other QTLs into single-segment substitution lines.
Reference | Related Articles | Metrics
Effects of urea enhanced with different weathered coal-derived humic acid components on maize yield and fate of fertilizer nitrogen
ZHANG Shui-qin, YUAN Liang, LI Wei, LIN Zhi-an, LI Yan-ting, HU Shu-wen, ZHAO Bing-qiang
2019, 18 (3): 656-666.   DOI: 10.1016/S2095-3119(18)61950-1
Abstract233)      PDF (773KB)(225)      
Humic acid (HA) is a readily available and low-cost material that is used to enhance crop production and reduce nitrogen (N) loss.  However, there is little consensus on the efficacy of different HA components.  In the current study, a soil column experiment was conducted using the 15N tracer technique in Dezhou City, Shandong Province, China, to compare the effects of urea with and without the addition of weathered coal-derived HA components on maize yield and the fate of fertilizer-derived N (fertilizer N).  The HA components were incorporated into urea by blending different HA components into molten urea to obtain the three different types of HA-enhanced urea (HAU).  At harvest, the aboveground dry biomass of plants grown with HAU was enhanced by 11.50–21.33% when compared to that of plants grown with U.  More significantly, the grain yields under the HAU treatments were 5.58–18.67% higher than the yield under the urea treatment.  These higher yields were due to an increase in the number of kernels per plant rather than the weight of individual kernels.  The uptake of fertilizer N under the HAU treatments was also higher than that under the urea treatment by 11.49–29.46%, while the unaccounted N loss decreased by 12.37–30.05%.  More fertilizer-derived N was retained in the 0–30 cm soil layer under the HAU treatments than that under the urea treatment, while less N was retained in the 30–90 cm soil layer.  The total residual amount of fertilizer N in the soil column, however, did not differ significantly between the treatments.  Of the three HAU treatments investigated, the one with an HA fraction derived from extraction with pH values ranging from 6 to 7, resulted in the best improvement in all assessment targets.  This is likely due to the abundance of the COO/C–N=O group in this HA component.
 
Reference | Related Articles | Metrics
Identification of SNPs and expression patterns of FZD3 gene and its effect on wool traits in Chinese Merino sheep (Xinjiang Type)
ZHAO Bing-ru, FU Xue-feng, TIAN Ke-chuan, HUANG Xi-xia, DI Jiang, BAI Yan, XU Xin-ming, TIAN Yue-zhen, WU Wei-wei, ABLAT Sulayman, ZENG Wei-dan, HANIKEZI Tulafu
2019, 18 (10): 2351-2360.   DOI: 10.1016/S2095-3119(19)62735-8
Abstract153)      PDF in ScienceDirect      
As a member of the Frizzled family, Frizzled3 (FZD3) is a receptor of the canonical Wnt signaling pathway and plays a vital role in mammalian hair follicle developmental processes.  However, its effects on wool traits are not clear.  The objectives of this study were to identify the single nucleotide polymorphisms (SNPs) and the expression patterns of FZD3 gene, and then to determine whether it affected wool traits of Chinese Merino sheep (Xinjiang Type) or not.  PCR-single stranded conformational polymorphism (PCR-SSCP) and sequencing were used to identify mutation loci, and general linear model (GLM) with SAS 9.1 was used for the association analysis between wool traits and SNPs.  Quantitative real-time PCR (qRT-PCR) was used to investigate FZD3 gene expression levels.  The results showed that six exons of FZD3 gene were amplified and two mutation loci were identified in exon 1 (NC_019459.2: g.101771685 T>C (SNP1)) and exon 3 (NC_019459.2: g.101810848, A>C (SNP2)), respectively.  Association analysis showed that SNP1 was significantly associated with mean fiber diameter (MFD) (P=0.04) and live weight (LW) (P=0.0004), SNP2 was significantly associated with greasy fleece weight (GFW) (P=0.04).  The expression level of FZD3 gene in skin tissues of the superfine wool (SF) group was significantly lower (P<0.05) than that of the fine wool (F) group.  Moreover, it had a higher expression level (P<0.01) in skin tissues than in other tissues of Chinese Merino ewes.  While, its expression level had a fluctuant expression in skin tissues at different developmental stages of embryos and born lambs, with the highest expression levels (P<0.01) at the 65th day of embryos.  Our study revealed the genetic relationship between FZD3 variants and wool traits and two identified SNPs might serve as potential and valuable genetic markers for sheep breeding and lay a molecular genetic foundation for sheep marker-assisted selection (MAS).
Reference | Related Articles | Metrics
Maize/peanut intercropping increases photosynthetic characteristics, 13C-photosynthate distribution, and grain yield of summer maize
LI Yan-hong, SHI De-yang, LI Guang-hao, ZHAO Bin, ZHANG Ji-wang, LIU Peng, REN Bai-zhao, DONG Shu-ting
2019, 18 (10): 2219-2229.   DOI: 10.1016/S2095-3119(19)62616-X
Abstract141)      PDF in ScienceDirect      
Intercropping is used widely by smallholder farmers in developing countries to increase land productivity and profitability.  We conducted a maize/peanut intercropping experiment in the 2015 and 2016 growing seasons in Shandong, China.  Treatments included sole maize (SM), sole peanut (SP), and an intercrop consisting of four rows of maize and six rows of peanut (IM and IP).  The results showed that the intercropping system had yield advantages based on the land equivalent ratio (LER) values of 1.15 and 1.16 in the two years, respectively.  Averaged over the two years, the yield of maize in the intercropping was increased by 61.05% compared to that in SM, while the pod yield of peanut was decreased by 31.80% compared to SP.  Maize was the superior competitor when intercropped with peanut, and its productivity dominated the yield of the intercropping system in our study.  The increased yield was due to a higher kernel number per ear (KNE).  Intercropping increased the light transmission ratio (LTR) of the ear layer in the maize canopy, the active photosynthetic duration (APD), and the harvest index (HI) compared to SM.  In addition, intercropping promoted the ratio of dry matter accumulation after silking and the distribution of 13C-photosynthates to grain compared to SM.  In conclusion, maize/peanut intercropping demonstrated the potential to improve the light condition of maize, achieving enhanced photosynthetic characteristics that improved female spike differentiation, reduced barrenness, and increased KNE.  Moreover, dry matter accumulation and 13C-photosynthates distribution to grain of intercropped maize were improved, and a higher grain yield was ultimately obtained.
Reference | Related Articles | Metrics
Nutrient uptake requirements with increasing grain yield for rice in China
CHE Sheng-guo, ZHAO Bing-qiang, LI Yan-ting, YUAN Liang, LIN Zhi-an, HU Shu-wen, SHEN Bing
2016, 15 (4): 907-917.   DOI: 10.1016/S2095-3119(15)61143-1
Abstract2182)      PDF in ScienceDirect      
Improved estimates of nutrient requirements for rice (Oryza sativa L.) in China are essential to optimize fertilization regulation for increasing grain yields and reducing the potential of environmental negative influences, especially under high-yielding intensive systems. A database involving rice grain yields, nutrient concentrations and accumulations collected from on-field station experiments in the literatures published from 2000 to 2013 in China was developed to understand the relationships between grain yields and plant nutrient uptakes, and to quantify nutrient requirements for different yield levels. Considering all data sets, rice grain yield ranged from 1.4 to 15.2 t ha–1 with the mean value of 7.84 t ha–1, and ca. 10.4% of yield observations were higher than the yield barrier level of 10 t ha–1. N requirement to produce one ton grain was 21.10 kg for the yield range <4.0 t ha–1 with a high variation of 45.8%. Except of the yield range <4.0 t ha–1, the values of N requirement, firstly increased from 18.78 kg for yield range 4.0–5.5 t ha–1 to 20.62 kg for yield range 7.0–8.5 t ha–1, then decreased slightly to 19.67 and 19.17 kg for the yield range 8.5–10 and >10 t ha–1, respectively. Phosphorus (P) and potassium (K) requirements showed increasing trends, from 3.51 and 19.87 kg per t grain for <4.0 t ha–1 yield range to 4.10 and 21.70 kg for >10.0 t ha–1 range. In conclusion, nutrient requirement varied with increasement of grain yield, and N, P and K presented various response trends, increasing, declining or stagnating, which would be of great benefit for improving fertilizer strategies.
Reference | Related Articles | Metrics
Increased plant density and reduced N rate lead to more grain yield and higher resource utilization in summer maize
SHI De-yang, LI Yan-hong, ZHANG Ji-wang, LIU Peng, ZHAO Bin, DONG Shu-ting
2016, 15 (11): 2515-2528.   DOI: 10.1016/S2095-3119(16)61355-2
Abstract2944)      PDF in ScienceDirect      
      Planting at an optimum density and supplying adequate nitrogen (N) to achieve higher yields is a common practice in crop production, especially for maize (Zea mays L.); however, excessive N fertilizer supply in maize production results in reduced N use efficiency (NUE) and severe negative impacts on the environment. This research was conducted to determine the effects of increased plant density and reduced N rate on grain yield, total N uptake, NUE, leaf area index (LAI), intercepted photosynthetically active radiation (IPAR), and resource use efficiency in maize. Field experiments were conducted using a popular maize hybrid Zhengdan 958 (ZD958) under different combinations of plant densities and N rates to determine an effective approach for maize production with high yield and high resource use efficiency. Increasing plant density was clearly able to promote N absorption and LAI during the entire growth stage, which allowed high total N uptake and interception of radiation to achieve high dry matter accumulation (DMA), grain yield, NUE, and radiation use efficiency (RUE). However, with an increase in plant density, the demand of N increased along with grain yield. Increasing N rate can significantly increase the DMA, grain yield, LAI, IPAR, and RUE. However, this increase was non-linear and due to the input of too much N fertilizers, the efficiency of N use at NCK (320 kg ha–1) was low. An appropriate reduction in N rate can therefore lead to higher NUE despite a slight loss in grain production. Taking into account both the need for high grain yield and resource use efficiency, a 30% reduction in N supply, and an increase in plant density of 3 plants m–2, compared to LD (5.25 plants m–2), would lead to an optimal balance between yield and resource use efficiency.
Reference | Related Articles | Metrics
Comparative proteomic analysis provides new insights into ear leaf senescence of summer maize (Zea mays L.) under fild condition
WEI Shan-shan, WANG Xiang-yu, LIU Peng, ZHANG Ji-wang, ZHAO Bin, DONG Shu-ting
2016, 15 (05): 1005-1016.   DOI: 10.1016/S2095-3119(15)61163-7
Abstract1728)      PDF in ScienceDirect      
As the most important organ in plant photosynthesis, the leaf plays an important role in plant growth and development. Leaf senescence is associated with fundamental changes in the proteome. To research the molecular mechanisms of leaf senescence, protein expression in senescing maize ear leaves grown under field conditions was analyzed using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionisation time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS). A total of 60 senescence-associated proteins were identified. The identified proteins are involved in many biological processes, especially energy, metabolism and protein synthesis. Several of the identified proteins have not been previously reported as senescence-associated, including glycine-rich RNA-binding protein.
Reference | Related Articles | Metrics
Modified fertilization management of summer maize (Zea mays L.) in northern China improves grain yield and efficiency of nitrogen use
CHENG Yi, ZHAO Jie, LIU Zhen-xiang, HUO Zhi-jin, LIU Peng, DONG Shu-ti ng, ZHANG Ji-wang, ZHAO Bin
2015, 14 (8): 1644-1657.   DOI: 10.1016/S2095-3119(14)60879-0
Abstract1759)      PDF in ScienceDirect      
Improving the yield of maize grain per unit area is needed to meet the growing demand for it in China, where the availability of fertile land is very limited. Modified fertilization management and planting density are efficient methods for increasing crop yield. Field experiments were designed to investigate the influence of modified fertilization management and planting density on grain yield and nitrogen use efficiency of the popular maize variety Zhengdan 958, in four treatments including local farmer’s practice (FP), high-yielding and high efficiency cultivation (HH), super high-yielding cultivation (SH), and the control (CK). Trials were conducted in three locations of the Huang-Huai-Hai Plain in northern China. Compared with FP, SH was clearly able to promote N absorption and dry matter accumulation in post-anthesis, and achieve high yield and N use efficiency by increasing planting density and postponing the supplementary application of fertilizers. However, with an increase in planting density, the demand of N increased along with grain yield. Due to the input of too much N fertilizer, the efficiency of N use in SH was low. Applying less total N, ameliorating cultivation and cropping management practices should be considered as priority strategies to augment production potential and finally achieve synchronization between high yield and high N efficiency in fertile soils. However, in situations where soil fertility is low, achieving high yield and high N use efficiency in maize will likely depend on increased planting density and appropriate application of supplementary fertilizers postpone to the grain-filling stage.
Reference | Related Articles | Metrics
Enhanced resistance to Botrytis cinerea and Rhizoctonia solani in transgenic broccoli with a Trichoderma viride endochitinase gene
YU Ya, ZHANG Lei, LIAN Wei-ran, XU Feng-feng, LI Shuang-tao, XIANG Juan, ZHANG Guo-zhen, HU Zan-min, ZHAO Bing, REN Shu-xin, GUO Yang-dong
2015, 14 (3): 430-437.   DOI: 10.1016/S2095-3119(14)60919-9
Abstract2010)      PDF in ScienceDirect      
A endochitinase gene (Tch) from the fungus Trichoderma viride was introduced into broccoli (Brassica oleracea var. italica) by Agrobacterium-mediated transformation. Sixty-eight putative transformants were obtained and the presence of the Tch gene was confirmed by both PCR and Southern blot analysis. RT-PCR analysis showed an accumulation of the transcript encoding the endochitinase protein in the transgenic plants. Using real-time quantitative PCR, the expression profiling of endochitinase gene was analyzed. Primary transformants and selfed progeny were examined for expression of the endochitinase using a fluorometric assay and for their resistance to the pathogenic fungi Botrytis cinerea and Rhizoctonia solani. The endochitinase activities in T0 in vitro plants, T0 mature plants and T1 mature plants were correlated with leaf lesions, and the transgenic line T618 had high endochitinse activities of 102.68, 114.53 and 120.27 nmol L–1 MU min–1 mg–1 protein in the three kinds of plants, respectively. The endochitinase activity showed a positive correlation with the resistance to the pathogens. Most transgenic T0 broccoli had increased resistance to the pathogens of B. cinerea and R. solani in leaf assays and this resistance was confirmed to be inheritable. These findings suggested that expression of the Tch gene from T. viride could enhance resistance to pathogenic fungi in Brassica species.
Reference | Related Articles | Metrics
Nitrate leaching of winter wheat grown in lysimeters as affected by fertilizers and irrigation on the North China Plain
GU Li-min, LIU Tie-ning, ZHAO Jun, DONG Shu-ting, LIU Peng, ZHANG Ji-wang, ZHAO Bin
2015, 14 (2): 374-388.   DOI: 10.1016/S2095-3119(14)60747-4
Abstract2577)      PDF in ScienceDirect      
Proper application of nitrogen (N) fertilizers and irrigation management are important production practices that can reduce nitrate leaching into groundwater and improve the N use efficiency (NUE). A lysimeter/rain shelter facility was used to study effects of the rate of N fertilization, type of N fertilizer, and irrigation level on key aspects of winter wheat production over three growing seasons (response variables were nitrate transport, N leaching, and NUE). Results indicated that nitrate concentration in the soil profile and N leaching increased with the rate of N fertilization. At the end of the third season, nitrate concentration in the top 0–75 cm layer of soil was higher with manure treatment while urea treatments resulted in higher concentrations in the 100–200 cm layer. With normal irrigation, 3.4 to 15.3% of N from applied fertilizer was leached from the soil, yet no leaching occurred under a stress irrigation treatment. The manure treatment experienced less N leaching than the urea treatment in all cases except for the 180 kg N ha-1 rate in 2011–2012 (season 3). In terms of grain yield (GY), dry matter (DM) or NUE parameters, values for the manure treatment were lower than for the urea treatment in 2009–2010 (season 1), yet were otherwise higher for urea treatment in season 3. GY and crop nitrogen uptake (NU) were elevated when the rate of N fertilizer increased, while the NUE decreased; GY, DM, and NU increased with the amount of irrigation. Data indicated that reduced rates of N fertilization combined with increased manure application and proper irrigation management can lower nitrate levels in the subsoil and reduce potential N leaching into groundwater.
Reference | Related Articles | Metrics
An asymmetric membrane of polyimide 6FDA-BDAF and its pervaporation desulfurization for n-heptane/thiophene mixtures
YANG Xiang-dong, YE Hong, LI Yan-ting, LI Juan, LI Ji-ding, ZHAO Bing-qiang, LIN Yang-zheng
2015, 14 (12): 2529-2537.   DOI: 10.1016/S2095-3119(15)61213-8
Abstract1328)      PDF in ScienceDirect      
Polyimide (PI) is a type of important membrane material. A soluble polymer was synthesized from 4,4´-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) and 2,2-bis[4-(4-aminophenoxy) phenyl] hexafluoropropane (BDAF) by the two-step polymerization method. The polymer was proved to be polyimide 6FDA-BDAF by the Fourier transform infrared (FT-IR), the 1H-NMR and 19F-NMR spectra. An asymmetric membrane was prepared with the synthesized polyimide 6FDA-BDAF, it was porous in the 50 μm height bulk and dense in a 3–5 μm height surface. The membrane was used to separate n-heptane/ thiophene mixtures by pervaporation with sulfur (S) contents from 50 to 900 μg g–1. The total flux was enlarged from 7.96 to 37.61 kg m–2 h–1 with temperature increasing from 50 to 90°C. The membrane’s enrichments factor for thiophene were about 3.13 and dependent on the experimental conditions. The experimental results demonstrated that polyimide 6FDA-BDAF would be a potential membrane material for desulfurization and controlled release of the S-containing fertilizer.
Reference | Related Articles | Metrics
Microbial community structure and functional metabolic diversity are associated with organic carbon availability in an agricultural soil
LI Juan, LI Yan-ting, YANG Xiang-dong, ZHANG Jian-jun, LIN Zhi-an, ZHAO Bing-qiang
2015, 14 (12): 2500-2511.   DOI: 10.1016/S2095-3119(15)61229-1
Abstract2216)      PDF in ScienceDirect      
Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental characteristics especially organic carbon availability after 15-yr different organic and inorganic fertilizer inputs on soil bacterial community structure and functional metabolic diversity of soil microbial communities were evaluated in a 15-yr fertilizer experiment in Changping County, Beijing, China. The experiment was a wheat-maize rotation system which was established in 1991 including four different fertilizer treatments. These treatments included: a non-amended control (CK), a commonly used application rate of inorganic fertilizer treatment (NPK); a commonly used application rate of inorganic fertilizer with swine manure incorporated treatment (NPKM), and a commonly used application rate of inorganic fertilizer with maize straw incorporated treatment (NPKS). Denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA gene was used to determine the bacterial community structure and single carbon source utilization profiles were determined to characterize the microbial community functional metabolic diversity of different fertilizer treatments using Biolog Eco plates. The results indicated that long-term fertilized treatments significantly increased soil bacterial community structure compared to CK. The use of inorganic fertilizer with organic amendments incorporated for long term (NPKM, NPKS) significantly promoted soil bacterial structure than the application of inorganic fertilizer only (NPK), and NPKM treatment was the most important driver for increases in the soil microbial community richness (S) and structural diversity (H). Overall utilization of carbon sources by soil microbial communities (average well color development, AWCD) and microbial substrate utilization diversity and evenness indices (H’ and E) indicated that long-term inorganic fertilizer with organic amendments incorporated (NPKM, NPKS) could significantly stimulate soil microbial metabolic activity and functional diversity relative to CK, while no differences of them were found between NPKS and NPK treatments. Principal component analysis (PCA) based on carbon source utilization profiles also showed significant separation of soil microbial community under long-term fertilization regimes and NPKM treatment was significantly separated from the other three treatments primarily according to the higher microbial utilization of carbohydrates, carboxylic acids, polymers, phenolic compounds, and amino acid, while higher utilization of amines/amides differed soil microbial community in NPKS treatment from those in the other three treatments. Redundancy analysis (RDA) indicated that soil organic carbon (SOC) availability, especially soil microbial biomass carbon (Cmic) and Cmic/SOC ratio are the key factors of soil environmental characteristics contributing to the increase of both soil microbial community structure and functional metabolic diversity in the long-term fertilization trial. Our results showed that long-term inorganic fertilizer and swine manure application could significantly improve soil bacterial community structure and soil microbial metabolic activity through the increases in SOC availability, which could provide insights into the sustainable management of China’s soil resource.
Reference | Related Articles | Metrics
Review grain yield and nitrogen use efficiency in rice production regions in China
CHE Sheng-guo, ZHAO Bing-qiang, LI Yan-ting, YUAN Liang, LI Wei, LIN Zhi-an, HU Shu-wen, SHEN Bing
2015, 14 (12): 2456-2466.   DOI: 10.1016/S2095-3119(15)61228-X
Abstract1587)      PDF in ScienceDirect      
As one of the staple food crops, rice (Oryza sativa L.) is widely cultivated across China, which plays a critical role in guaranteeing national food security. Most previous studies on grain yield or/and nitrogen use efficiency (NUE) of rice in China often involved site-specific field experiments, or small regions with insufficient data, which limited the representation for the current rice production regions. In this study, a database covering a wide range of climate conditions, soil types and field managements across China, was developed to estimate rice grain yield and NUE in various rice production regions in China and to evaluate the relationships between N rates and grain yield, NUE. According to the database for rice, the values of grain yield, plant N accumulation, N harvest index (HIN), indigenous N supply (INS), internal N efficiency (IEN), reciprocal internal N efficiency (RIEN), agronomic N use efficiency (AEN), partial N factor productivity (PEPN), physiological N efficiency (PEN), and recover efficiency of applied N (REN) averaged 7.69 t ha–1, 152 kg ha–1, 0.64 kg kg–1, 94.1 kg kg–1, 53.9 kg kg–1, 1.98 kg kg–1, 12.6 kg kg–1, 48.6 kg kg–1, 33.8 kg kg–1, and 39.3%, respectively. However, the corresponding values all varied tremendously with large variation. Rice planting regions and N rates had significant influence on grain yield, N uptake and NUE values. Considering all observations, N rates of 200 to 250 kg ha–1 commonly achieved higher rice grain yield compared to less than 200 kg N ha–1 and more than 250 kg N ha–1 at most rice planting regions. At N rates of 200 to 250 kg ha–1, significant positive linear relationships were observed between rice grain yield and AEN, PEN, REN, IEN, and PFPN, and 46.49, 24.64, 7.94, 17.84, and 88.24% of the variation in AEN, PEN, REN, IEN, and PFPN could be explained by grain yield, respectively. In conclusion, in a reasonable range of N application, an increase in grain yield can be achieved accompanying by an acceptable NUE.
Reference | Related Articles | Metrics
Simulation of water and nitrogen dynamics as affected by drip fertigation strategies
ZHANG Jian-jun, LI Jiu-sheng, ZHAO Bing-qiang, LI Yan-ting
2015, 14 (12): 2434-2445.   DOI: 10.1016/S2095-3119(15)61231-X
Abstract1513)      PDF in ScienceDirect      
The aim of drip fertigation is synchronising the application of water and nutrients with crop requirements, and maintaining the proper concentration and distribution of nutrient and water in the soil. The wetting patterns and nutrient distributions under drip fertigation have been proved to be closely related to the fertigation strategies. In order to find out the critical factors that affect the nutrient distribution under different drip fertigaiton strategies, a computer simulation model HYDRUS2D/3D was used to simulate the water and nitrate distribution for various fertigation strategies from a surface point source. Simulation results were compared with the observed ones from our previous studies. A 15° wedge-shaped plexiglass container was used in our experiment to represent one-twenty-fourth of the complete cylinder. The height of container is 40 cm, and the radius is 41 cm. The ammonium nitrate solution was added through a no. 7 needle connected to a Mariotte tube with a flexible hose. The soil water content, nitrate and ammonium concentrations were measured. The comparison of simulated and observed data demonstrated that the model performed reliably. The numerical analysis for various fertigation strategies from a surface point source showed that: (1) The total amount of irrigation water, the concentration of the fertilizer solution and the amount of pure water used to flush the pipeline after fertilizer solution application are the three critical factors influencing the distribution of water and fertilizer nitrogen in the soil. (2) The fresh water irrigation duration prior to fertigation has no obvious effect on nitrate distribution. The longer flushing time period after fertigation resulted in nitrate accumulation closer to the wetting front. From the point of avoiding the possibility of nitrate loss from the root zone, we recommended that the flushing time period should be as shorter as possible. (3) For a given amount of fertilizer, higher concentration of the fertilizer applied solution reduces the potential of nitrate leaching in drip irrigation system. While, lower concentration of the fertilizer solution resulted in an uniform distribution of nitrate band closer to the wetted front.
Reference | Related Articles | Metrics
The Responses of Morphological Trait, Leaf Ultrastructure, Photosynthetic and Biochemical Performance of Tomato to Differential Light Availabilities
FU Qiu-shi, ZHAO Bing, WANG Xue-wen, WANG Yu-jue, REN Shu-xin , GUO Yang-dong
2011, 10 (12): 1887-1897.   DOI: 10.1016/S1671-2927(11)60189-2
Abstract3189)      PDF in ScienceDirect      
The whole-plant morphology, leaf ultrastructure, photosynthesis as well as enzyme activities of two tomato cultivars (Meifen-2 and Hongsheng) to differential light availabilities (450-500 μmol m-2 s-1, 75-100 μmol m-2 s-1) were examined in controlled environment. The results showed that the plant biomass and root/shoot ratio decreased and the specific leaf area increased significantly under the low light condition. There was a significant increase in malondialdehyde (MDA) concentration, superoxide dismutase (SOD) and peroxidase (POD) activities and decrease in soluble sugar and protein contents in LL-grown plants. For both cultivars, downregulation of photosynthesis and electron transport components were observed in LL-grown plants, the inhibition of the photosynthesis under the LL condition could be partially explained by the decrease of stomata density and by the changes of chloroplast.
Reference | Related Articles | Metrics