Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (5): 1253-1265    DOI: 10.1016/S2095-3119(20)63466-9
Special Issue: 玉米遗传育种合辑Maize Genetics · Breeding · Germplasm Resources
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Creation of two hyperactive variants of phytochrome B1 for attenuating shade avoidance syndrome in maize
ZHAO Yong-ping1*, ZHAO Bin-bin1*, WU Guang-xia1*, MA Xiao-jing1, WANG Bao-bao1, KONG De-xin2, WEI Hong-bin2, WANG Hai-yang2,3
1 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
2 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Ministry of Science and Technology/South China Agricultural University, Guangzhou 510642, P.R.China
3 Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

增加种植密度是提高玉米产量的有效措施。然而,密植容易引发植物的避荫反应综合征,导致抗倒伏能力下降,最终导致产量降低。光敏色素B(phyB)在植物避荫反应中起主导作用。研究表明,将拟南芥PHYB(AtPHYB)104和361位的酪氨酸(Y)改变为苯丙氨酸(F)可以增强其活性。在本研究中,我们通过模拟AtPHYB的Y104F和Y361F的突变形式,创制了两个玉米PHYB1超敏突变体: ZmPHYB1Y98F和ZmPHYB1Y359F。在ZmPHYB1自身启动子的驱动下,将ZmPHYB1Y98F、ZmPHYB1Y359F和野生型的ZmPHYB1 (ZmPHYB1WT)转入到拟南芥phyB-9突变体中。在转基因拟南芥中,与ZmPHYB1WT相比,异源表达ZmPHYB1Y98FZmPHYB1Y359F增强了对phyB-9相关表型的互补功能。与ZmPHYB1WT相似,红光处理可诱导ZmPHYB1Y98F和ZmPHYB1Y359F蛋白从细胞质中转运到细胞核,并且能够与玉米中的PIF蛋白互作。此外,在模拟遮荫处理下,ZmPHYB1自身启动子驱动的ZmPHYB1Y98FZmPHYB1Y359F在转基因玉米中的表达可以减弱玉米幼苗的避荫反应综合征,还能够降低玉米植株的株高和穗位高。综上所述,研究结果表明ZmPHYB1Y98FZmPHYB1Y359F能够减弱玉米的避荫反应综合征,为培育耐密玉米品种提供了新思路




Abstract  Increasing the planting density of maize is an effective measure to improve its yield.  However, plants under high planting density tend to trigger shade avoidance syndrome (SAS), reducing lodging resistance and ultimately yield drop.  Phytochrome B
(phyB) plays a dominant role in mediating shade avoidance response.  This study constructed two hyperactive mutated alleles of maize PHYB1: ZmPHYB1Y98F (mimicking Y104F of AtPHYB) and ZmPHYB1Y359F (mimicking Y361F of AtPHYB).  Ectopic expression of ZmPHYB1Y98F and ZmPHYB1Y359F under the control of the ZmPHYB1 promoter in the Arabidopsis phyB-9 background rendered enhanced activity on complementing the phyB-9 related phenotypes compared with ZmPHYB1WT.  Moreover, similar to the behavior of ZmPHYB1WT, ZmPHYB1Y98F and ZmPHYB1Y359F proteins are localized to the nucleus after red light exposure, and could interact with PIF proteins of maize.  In addition, expression of ZmPHYB1Y98F and ZmPHYB1Y359F variants under the control of the native ZmPHYB1 promoter attenuated SAS of maize seedlings subjected to simulated shade treatment.  It effectively reduced mature maize’s plant height and ear height in field conditions.  The results combined demonstrate the utility of ZmPHYB1Y98F and ZmPHYB1Y359F for attenuating SAS and breeding high density-tolerant varieties of maize.

Received: 15 August 2020   Accepted: 15 October 2020
Fund: This work was financially supported by the Major Program of Guangdong Basic and Applied Research, China (2019B030302006), the National Natural Science Foundation of China (31801377) and the funding from the State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China (SKLCUSA-b201801).
About author:  Correspondence WANG Hai-yang, Tel/Fax: +86-10-82105488, E-mail: whyang@scau.edu.cn * These authors contributed equally to this study.

Cite this article: 

ZHAO Yong-ping, ZHAO Bin-bin, WU Guang-xia, MA Xiao-jing, WANG Bao-bao, KONG De-xin, WEI Hong-bin, WANG Hai-yang. 2022. Creation of two hyperactive variants of phytochrome B1 for attenuating shade avoidance syndrome in maize. Journal of Integrative Agriculture, 21(5): 1253-1265.

Alves F R R, Lira B S, Pikart F C, Monteiro S S, Furlan C M, Purgatto E, Pascoal G B, Andrade S, Demarco D, Rossi M, Freschi L. 2020. Beyond the limits of photoperception: constitutively active phytochrome B2 overexpression as a means of improving fruit nutritional quality in tomato. Plant Biotechnology Journal, 18, 2027–2041.
Boccalandro H E, Ploschuk E L, Yanovsky M J, Sanchez R A, Gatz C, Casal J J. 2003. Increased phytochrome B alleviates density effects on tuber yield of field potato crops. Plant Physiology, 133, 1539–1546.
Boylan M T, Quail P H. 1989. Oat phytochrome is biologically active in transgenic tomatoes. The Plant Cell, 1, 765–773.
Casal J J. 2013. Canopy light signals and crop yield in sickness and in health. ISRN Agronomy, 2013, 1–16.
Chen M, Schwab R, Chory J. 2003. Characterization of the requirements for localization of phytochrome B to nuclear bodies. Proceedings of the National Academy of Sciences of the United States of America, 100, 14493–14498.
Clough S J, Bent A F. 1998. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 16, 735–743.
Dell’Acqua M, Gatti D M, Pea G, Cattonaro F, Coppens F, Magris G, Hlaing A L, Aung H H, Nelissen H, Baute J, Frascaroli E, Churchill G A, Inze D, Morgante M, Pe M E. 2015. Genetic properties of the MAGIC maize population: A new platform for high definition QTL mapping in Zea mays. Genome Biology, 16, 167.
Deng X W, Quail P H. 1999. Signalling in light-controlled development. Seminars in Cell & Developmental Biology, 10, 121–129.
Dubois P G, Brutnell T P. 2011. Topology of a maize field: distinguishing the influence of end-of-day far-red light and shade avoidance syndrome on plant height. Plant Signaling & Behavior, 6, 467–470.
Duvick D N. 1997. What is yield? In: Edmeades G O, Banziger B, Mickelson H R, Peña-Valdivia C B, eds., Developing Drought and Low N-Tolerant Maize. CIMMYT, El Batan, Mexico. pp. 332–335.
Duvick D N. 2005a. Genetic progress in yield of United States maize (Zea mays L.). Maydica, 50, 193–202.
Duvick D N. 2005b. The contribution of breeding to yield advances in maize (Zea mays L.). Advances in Agronomy, 86, 83–145.
Farkas I, Dombrádi V, Miskei M, Szabados L, Koncz C. 2007. Arabidopsis PPP family of serine/threonine phosphatases. Trends in Plant Science, 12, 169–176.
Franklin K A, Praekelt U, Stoddart W M, Billingham O E, Halliday K J, Whitelam G C. 2003. Phytochromes B, D, and E act redundantly to control multiple physiological responses in Arabidopsis. Plant Physiology, 131, 1340–1346.
Franklin K A, Quail P H. 2010. Phytochrome functions in Arabidopsis development. Journal of Experimental Botany, 61, 11–24.
Ganesan M, Han Y J, Bae T W, Hwang O J, Chandrasekhar T, Shin A Y, Goh C H, Nishiguchi S, Song I J, Lee H Y, Kim J I, Song P S. 2012. Overexpression of phytochrome A and its hyperactive mutant improves shade tolerance and turf quality in creeping bentgrass and zoysiagrass. Planta, 236, 1135–1150.
Garg A K, Sawers R J, Wang H, Kim J K, Walker J M, Brutnell T P, Parthasarathy M V, Vierstra R D, Wu R J. 2006. Light-regulated overexpression of an Arabidopsis phytochrome A gene in rice alters plant architecture and increases grain yield. Planta, 223, 627–636.
Gonzalo M, Holland J B, Vyn T J, McIntyre L M. 2010. Direct mapping of density response in a population of B73 × Mo17 recombinant inbred lines of maize (Zea mays L.). Heredity, 104, 583–599.
Gururani M A, Ganesan M, Song I J, Han Y, Kim J I, Lee H Y, Song P S. 2015a. Transgenic turfgrasses expressing hyperactive Ser599Ala phytochrome a mutant exhibit abiotic stress tolerance. Journal of Plant Growth Regulation, 35, 11–21.
Gururani M A, Ganesan M, Song P S. 2015b. Photo-biotechnology as a tool to improve agronomic traits in crops. Biotechnology Advances, 33, 53–63.
Gururani M A, Venkatesh J, Ganesan M, Strasser R J, Han Y, Kim J I, Lee H Y, Song P S. 2015c. In vivo assessment of cold tolerance through chlorophyll-a fluorescence in transgenic zoysiagrass expressing mutant phytochrome A. 
PLoS ONE, 10, e0127200.
Hedden P. 2003. The genes of the green revolution. Trends in Genetics, 19, 5–9.
Hu W, Figueroa-Balderas R, Chi-Ham C, Lagarias J C. 2020. Regulation of monocot and dicot plant development with constitutively active alleles of phytochrome B. Plant Direct, 4, e00210.
Hu W, Su Y S, Lagarias J C. 2009. A light-independent allele of phytochrome B faithfully recapitulates photomorphogenic transcriptional networks. Molecular Plant, 2, 166–182.
Hwang O J, Lim S H, Han Y J, Shin A Y, Kim D S, Kim J I. 2014. Phenotypic characterization of transgenic miscanthus sinensis plants overexpressing Arabidopsis phytochrome B. International Journal of Photoenergy, 2014, 1–9.
Jiao Y, Lau O S, Deng X W. 2007. Light-regulated transcriptional networks in higher plants. Nature Reviews Genetics, 8, 217–230.
Kebrom T H, Brutnell T P, Finlayson S A. 2010. Suppression of sorghum axillary bud outgrowth by shade, phyB and defoliation signalling pathways. Plant, Cell & Environment, 33, 48–58.
Kebrom T H, Burson B L, Finlayson S A. 2006. Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiology, 140, 1109–1117.
Kim D H, Kang J G, Yang S S, Chung K S, Song P S, Park C
M. 2002. A phytochrome-associated protein phosphatase 2A
modulates light signals in flowering time control in Arabidopsis. The Plant Cell, 14, 3043–3056.
Kim J I, Shen Y, Han Y J, Park J E, Kirchenbauer D, Soh M S, Nagy F, Schäfer E, Song P S. 2004. Phytochrome phosphorylation modulates light signaling by influencing the protein–protein interaction. The Plant Cell, 16, 2629–2640.
Kim K M, Shin B, Choi G, Yang K Y. 2004. Development of high yielding cassava and sweetpotato lines as alternative biofuel crops. In: Kumho Life and Environmental Science Laboratory Annual Report. Kwangju, South Korea. pp. 30–36.
Lan J H, Chu D. 2005. Study on the genetic basis of plant height and ear height in maize (Zea mays L.) by QTL dissection. Hereditas, 27, 925–934.
Lapko V N, Jiang X Y, Smith D L, Song P S. 1999. Mass spectrometric characterization of oat phytochrome A: Isoforms and posttranslational modifications. Protein Science, 8, 1032–1044.
Li J, Li G, Wang H, Wang D X. 2011. Phytochrome signaling mechanisms. Arabidopsis Book, 9, e0148.
Li Q, Wu G, Zhao Y, Wang B, Zhao B, Kong D, Wei H, Chen C, Wang H. 2020. Crispr/Cas9-mediated knockout and overexpression studies reveal a role of maize phytochrome C in regulating flowering time and plant height. Plant Biotechnology Journal, 18, 1–13.
Li Z, Huang Y B. 2013. Protein structure and gene expression study of phytochrome B in maize. Journal of Plant Biochemistry and Biotechnology, 22, 234–240.
Ma X, Zhao B, Liu Y, Ma M, Wang H. 2019. Cloning, modification and functional characterization of maize PHYB1 in Arabidopsis thaliana. Current Biotechnology, 9, 350–356.
Major I, Campos M, Moreno J. 2017. The role of specialized photoreceptors in the protection of energy-rich tissues. Agronomy, 7, 23–35.
Mathews S. 2006. Phytochrome-mediated development in land plants: Red light sensing evolves to meet the challenges of changing light environments. Molecular Ecology, 15, 3483–3503.
Mathews S, Sharrock R A. 1997. Phytochrome gene diversity. Plant, Cell & Environment, 20, 666–671.
Multani D, Briggs S, Chamberlin M, Blakeslee J, Murphy A, Johal G. 2003. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science, 302, 81–84.
Nito K, Wong C C, Yates III J R, Chory J. 2013. Tyrosine phosphorylation regulates the activity of phytochrome photoreceptors. Cell Reports, 3, 1970–1979.
Pan Q, Xu Y, Li K, Peng Y, Zhan W, Li W, Li L, Yan J. 2017. The genetic basis of plant architecture in 10 maize recombinant inbred line populations. Plant Physiology, 175, 858–873.
Phee B K, Kim J I, Shin D H, Yoo J, Park K J, Han Y J, Kwon Y K, Cho M H, Jeon J S, Bhoo S H, Hahn T R. 2008. A novel protein phosphatase indirectly regulates phytochrome-interacting factor 3 via phytochrome. Biochemical Journal, 415, 247–255.
Rao A Q, Irfan M, Saleem Z, Nasir I A, Riazuddin S, Husnain T. 2011. Overexpression of the phytochrome B gene from Arabidopsis thaliana increases plant growth and yield of cotton (Gossypium hirsutum). Journal of Zhejiang University (Science B), 12, 326–334.
Reed J W, Nagpal P, Poole D S, Furuya M. 1993. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. The Plant Cell, 5, 147–157.
Ryu J S, Kim J I, Kunkel T, Kim B C, Cho D S, Hong S H, Kim S H, Fernández A P, Kim Y, Alonso J M, Ecker J R, Nagy F, Lim P O, Song P S, Schäfer E, Nam H G. 2005. Phytochrome-specific type 5 phosphatase controls light signal flux by enhancing phytochrome stability and affinity for a signal transducer. Cell, 120, 395–406.
Sheehan M J, Farmer P R, Brutnell T P. 2004. Structure and expression of maize phytochrome family homeologs. Genetics, 167, 1395–1405.
Sheehan M J, Kennedy L M, Costich D E, Brutnell T P. 2007. Subfunctionalization of PhyB1 and PhyB2 in the control of seedling and mature plant traits in maize. The Plant Journal, 49, 338–353.
Song J, Liu Q, Hu B, Wu W. 2017. Photoreceptor phyB involved in Arabidopsis temperature perception and heat-tolerance formation. International Journal of Molecular Sciences, 18, 1194.
Song M F, Zhang S, Hou P, Shang H Z, Gu H K, Li J J, Xiao Y, Guo L, Su L, Gao J W, Yang J P. 2015. Ectopic expression of a phytochrome B gene from Chinese cabbage (Brassica rapa L. ssp. pekinensis) in Arabidopsis thaliana promotes seedling de-etiolation, dwarfing in mature plants, and delayed flowering. Plant Molecular Biology, 87, 633–643.
Strasser B, Sanchez-Lamas M, Yanovsky M J, Casal J J, Cerdan P D. 2010. Arabidopsis thaliana life without phytochromes. Proceedings of the National Academy of Sciences of the United States of America, 107, 4776–4781.
Su Y S, Lagarias J C. 2007. Light-independent phytochrome signaling mediated by dominant GAF domain tyrosine mutants of Arabidopsis phytochromes in transgenic plants. The Plant Cell, 19, 2124–2139.
Thiele A, Herold M, Lenk I, Quail P H, Gatz C. 1999. Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development. Plant Physiology, 120, 73–82.
Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S. 2001. Dwarf8 polymorphisms associate with variation in flowering time. Nature Genetics, 28, 286–289.
Tian J, Wang C, Xia J, Wu L, Xu G, Wu W, Li D, Qin W, Han X, Chen Q, Jin W, Tian F. 2019. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science, 365, 658–664.
Wang H. 2005. Signaling mechanisms of higher plant photoreceptors: A structure-function perspective. Current Topics in Developmental Biology, 68, 227–261.
Wang H, Deng X W. 2003. Dissecting the phytochrome A-dependent signaling network in higher plants. Trends in Plant Science, 8, 172–178.
Weng J, Xie C, Hao Z, Wang J, Liu C, Li M, Zhang D, Bai L, Zhang S, Li X. 2011. Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize (Zea mays L.) inbred lines. PLoS ONE, 6, e29229.
Winkler R G, Helentjaris T. 1995. The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis. The Plant Cell, 7, 1307–1317.
Wu G, Zhao Y, Shen R, Wang B, Xie Y, Ma X, Zheng Z, Wang H. 2019. Characterization of maize phytochrome-interacting factors in light signaling and photomorphogenesis. Plant Physiology, 181, 789–803.
Xiao C, Chen F, Yu X, Lin C, Fu Y F. 2009. Over-expression of an AT-hook gene, AHL22, delays flowering and inhibits the elongation of the hypocotyl in Arabidopsis thaliana. Plant Molecular Biology, 71, 39–50.
Yang X J, Lu M, Zhang S H, Zhou F, Xie C X. 2008. QTL mapping of plant height and ear position in maize (Zea mays L.). Hereditas, 30, 1477–1486.
Zhang J, Stankey R J, Vierstra R D. 2013. Structure-guided engineering of plant phytochrome B with altered photochemistry and light signaling. Plant Physiology, 161, 1445–1457.
Zhang Z M, Zhao M J, Ding H P, Rong T Z, Pan G T. 2006. Quantitative trait loci analysis of plant height and ear height in maize (Zea mays L.). Russian Journal of Genetics, 42, 306–310.

No related articles found!
No Suggested Reading articles found!