Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Novel 18β-glycyrrhetinic acid amide derivatives show dual-acting capabilities for controlling plant bacterial diseases through ROS-mediated antibacterial efficiency and activating plant defense responses
SONG Ying-lian, LIU Hong-wu, YANG Yi-hong, HE Jing-jing, YANG Bin-xin, YANG Lin-li, ZHOU Xiang, LIU Li-wei, WANG Pei-yi, YANG Song
2023, 22 (9): 2759-2771.   DOI: 10.1016/j.jia.2022.10.009
Abstract205)      PDF in ScienceDirect      

Natural products have long been a crucial source of, or provided inspiration for new agrochemical discovery.  Naturally occurring 18β-glycyrrhetinic acid shows broad-spectrum bioactivities and is a potential skeleton for novel drug discovery.  To extend the utility of 18β-glycyrrhetinic acid for agricultural uses, a series of novel 18β-glycyrrhetinic acid amide derivatives were prepared and evaluated for their antibacterial potency.  Notably, compound 5k showed good antibacterial activity in vitro against Xanthomonas oryzae pv. oryzae (Xoo, EC50=3.64 mg L–1), and excellent protective activity (54.68%) against Xoo in vivo.  Compound 5k induced excessive production and accumulation of reactive oxygen species in the tested pathogens, resulting in damaging the bacterial cell envelope.  More interestingly, compound 5k could increase the activities of plant defense enzymes including catalase, superoxide dismutase, peroxidase, and phenylalanine ammonia lyase.  Taken together, these enjoyable results suggested that designed compounds derived from 18β-glycyrrhetinic acid showed potential for controlling intractable plant bacterial diseases by disturbing the balance of the phytopathogen’s redox system and activating the plant defense system

Reference | Related Articles | Metrics
Genetic diversity analysis and GWAS reveal the adaptive loci of milling and appearance quality of japonica (oryza sativa L.) in Northeast China
XU Xin, YE Jun-hua, YANG Ying-ying, LI Ruo-si, LI Zhen, WANG Shan, SUN Yan-fei, ZHANG Meng-chen, XU Qun, FENG Yue, WEI Xing-hua, YANG Yao-long
2022, 21 (6): 1539-1550.   DOI: 10.1016/S2095-3119(21)63701-2
Abstract387)      PDF in ScienceDirect      
Milling and appearance quality are important contributors to rice grain quality.  Abundant genetic diversity and a suitable environment are crucial for rice improvement.  In this study, we investigated the milling and appearance quality-related traits in a panel of 200 japonica rice cultivars selected from Liaoning, Jilin and Heilongjiang provinces in Northeast China.  Pedigree assessment and genetic diversity analysis indicated that cultivars from Jilin harbored the highest genetic diversity among the three geographic regions.  An evaluation of grain quality indicated that cultivars from Liaoning showed superior milling quality, whereas cultivars from Heilongjiang tended to exhibit superior appearance quality.  Single- and multi-locus genome-wide association studies (GWAS) were conducted to identify loci associated with milling and appearance quality-related traits.  Ninety-nine significant single-nucleotide polymorphisms (SNPs) were detected.  Three common SNPs were detected using the mixed linear model (MLM), mrMLM, and FASTmrMLM methods.  Linkage disequilibrium decay was estimated and indicated three candidate regions (qBRR-1, qBRR-9 and qDEC-3) for further candidate gene analysis.  More than 300 genes were located in these candidate regions.  Gene Ontology (GO) analysis was performed to discover the potential candidate genes.  Genetic diversity analysis of the candidate regions revealed that qBRR-9 may have been subject to strong selection during breeding.  These results provide information that will be valuable for the improvement of grain quality in rice breeding.
Reference | Related Articles | Metrics
Phenotype and mechanism analysis of plant dwarfing in pear regulated by abscisic acid
LIU Jian-long, ZHANG Chen-xiao, LI Tong-tong, LIANG Cheng-lin, YANG Ying-jie, LI Ding-Li, CUI Zhen-hua, WANG Ran, SONG Jian-kun
2022, 21 (5): 1346-1356.   DOI: 10.1016/S2095-3119(21)63786-3
Abstract167)      PDF in ScienceDirect      
Close planting of dwarf varieties is currently the main cultivation direction for pear trees, and the screening of excellent dwarf varieties is an important goal for breeders.  In this study, the dwarfing pear variety ‘601D’ and its vigorous mutant ‘601T’ were used to show their biological characteristics and further explore the dwarfing mechanism in ‘601D’.  The biological characteristics showed that ‘601D’ had a shorter internode length, a shorter and more compact tree body, thicker and broader leaves, lower stomata density, larger stomata size (dimension), and higher photosynthetic capacity.  The biological characteristics of ‘601T’ showed notable contrasts.  The results of endogenous hormone tests indicated that the contents of abscisic acid (ABA), ABA-glucosyl ester, and GA4 were higher in ‘601D’, but the trans-zeatin content was lower.  By transcriptomic analysis, significant differences were found in the biosynthetic and metabolic pathways of ABA.  Related transcription factors such as bHLH, WRKY, and homeobox also participated in the regulation of plant dwarfing.  We therefore examined three hormones with obvious differences with ‘601T’, and found that only ABA could induce ‘601T’ to return to a dwarfing plant phenotype.  Therefore, we conclude that the dwarfing of ‘601D’ is caused by an excessive accumulation of ABA.  This study provides a new theoretical basis for breeding dwarf varieties.
Reference | Related Articles | Metrics
MiR-140 downregulates fatty acid synthesis by targeting transforming growth factor alpha (TGFA) in bovine mammary epithelial cells
CHU Shuang-feng, ZHAO Tian-qi, Abdelaziz Adam Idriss ARBAB, YANG Yi, CHEN Zhi, YANG Zhang-ping
2022, 21 (10): 3004-3016.   DOI: 10.1016/j.jia.2022.07.039
Abstract323)      PDF in ScienceDirect      

Fat is an indispensable nutrient and basic metabolite for sustaining life, and milk is particularly rich in fatty acids, including a variety of saturated and unsaturated fatty acids.  MicroRNA (miRNA) and mRNA play an important role in the regulation of milk fat metabolism in mammary gland tissue.  It has been shown that lipid metabolism has a complex transcriptional regulation, but the mechanism by which milk fat synthesis is regulated through miRNA–mRNA interactions is poorly understood.  In this study, we performed transcriptome sequencing with bovine mammary gland tissue in the late lactation (270 and 315 days after parturition) to identify the key gene that regulating milk fat metabolism.  A total of 1 207 differentially coexpressed genes were selected, 828 upregulated genes and 379 downregulated genes were identified.  The transforming growth factor alpha (TGFA) gene was selected as the target gene, and luciferase reporter assay, Western blotting and qRT-PCR were used for further study.  The results demonstrated that miR-140 was an upstream regulator of TGFA, and miR-140 could inhibit (P<0.01) unsaturated fatty acid and triglyceride (TAGs) production in bovine mammary epithelial cells (BMECs).  In contrast, TGFA promoted (P<0.01) unsaturated fatty acid and TAG production.  Rescue experiments further indicated the miR-140/TGFA regulatory mechanism.  Taken together, these results suggest that the miR-140/TGFA pathway can inhibit (P<0.01) milk fat metabolism and improve milk quality by genetic means.

Reference | Related Articles | Metrics
Potential influence of carbohydrate and amino acid intake by adults on the population dynamics of Cnaphalocrocis medinalis (Lepidoptera: Crambidae)
LI Chuan-ming, XU Jian, LIU Qin, HAN Guang-jie, XU Bin, YANG Yi-zhong, LIU Xian-jin
2021, 20 (7): 1889-1897.   DOI: 10.1016/S2095-3119(20)63419-0
Abstract124)      PDF in ScienceDirect      
Cnaphalocrocis medinalis is a key lepidopteran pest of rice.  However, little is known about the nutritional requirements of the adult or the effects of adult-derived nutrients on reproduction.  The aim of the present study was to evaluate the effects of carbohydrates and amino acids on the reproductive and demographic parameters of C.?medinalis.  Different feeding solutions significantly influenced adult survival and reproduction.  All the sources of carbohydrates used in the treatments (fructose, glucose, and sucrose) were sufficient to increase adult longevity and fecundity, and benefited the development of ovaries in the adult stage.  The positive impact of carbohydrates on lifetime fecundity was due to the prolonged oviposition period and the increased daily fecundity.  The intrinsic rate of increase (rm) of C.?medinalis increased from 0.103 in water-fed individuals to approximately 0.138 when adults were fed with solutions containing carbohydrates.  In contrast, amino acid intake by adult insects exhibited no effect on the longevity, fecundity, ovarian development or population growth, even showing an impact of decreasing longevity of females.  As nectar secreted by the flowering plant is generally rich in sugars, the potential effects of nectar on the adults of C.?medinalis and other pests have to be considered during the development of biological control by applying flowering plants as a microhabitat and food source for natural enemies in rice fields.
Reference | Related Articles | Metrics
Expression profiles of Cry1Ab protein and its insecticidal efficacy against the invasive fall armyworm for Chinese domestic GM maize DBN9936
LIANG Jin-gang, ZHANG Dan-dan, LI Dong-yang, ZHAO Sheng-yuan, WANG Chen-yao, XIAO Yu-tao, XU Dong, YANG Yi-zhong, LI Guo-ping, WANG Li-li, GAO Yu, YANG Xue-qing, YUAN Hai-bin, LIU Jian, ZHANG Xiu-jie, WU Kong-ming
2021, 20 (3): 792-803.   DOI: 10.1016/S2095-3119(20)63475-X
Abstract164)      PDF in ScienceDirect      
The fall armyworm (FAW) Spodoptera frugiperda, which originated in the Americas, is advancing across China and threatening the nation’s maize crops.  Currently, one widely used tool for its control is genetically modified (GM) Bacillus thuringiensis (Bt) maize.  Sufficient content of Bt protein in appropriate plant parts is crucial for enhancing resistance against insect pests.  In this study, we conducted a systematic investigation of Cry1Ab levels in Chinese domestic GM maize DBN9936, which has recently obtained a biosafety certificate, and evaluated its efficacy against FAW.  Quantification of expression levels of Cry1Ab, via ELISA, indicated a spatio-temporal dynamic, with significant variation of mean Cry1Ab, ranging from 0.76 to 8.48 μg g–1 FW with the Cry1Ab protein level ranked as: V6–V8 leaf>R1 leaf>R4 leaf>R1 silk>VT tassel>R4 kernel.  Among the nine locations, the Cry1Ab levels in DBN9936 of the Xinxiang, Langfang, and Harbin fields were significantly lower than those from Wuhan and Shenyang, and were slightly, but not significantly lower than those from the other four fields.  Furthermore, the artificial diet–Cry1Ab mixture and plant tissue feeding bioassays revealed that DBN9936 has high efficacy against FAW.  The insecticidal efficacy of different tissues against FAW larvae reached 34–100% with a descending order of lethality as follows: VT leaf>R4 leaf>R1 husk>R1 silk>VT tassel>R4 kernel.  Taken together, our results showed that Bt-Cry1Ab maize DBN9936 has potential as a promising strategy to manage FAW.
 
Reference | Related Articles | Metrics
Effect of three insect-resistant maizes expressing Cry1Ie, Cry1Ab/Cry2Aj and Cry1Ab on the growth and development of armyworm Mythimna separata (Walker)
SU Hong-hua, JIANG Tao, SUN Yu, GU Hui-jie, WU Jiao-jiao, YANG Yi-zhong
2020, 19 (7): 1842-1849.   DOI: 10.1016/S2095-3119(20)63162-8
Abstract125)      PDF in ScienceDirect      
Three transgenic maize events (IE09S034, Shuangkang 12–5 and C0030.3.5) produced Cry1Ie, Cry1Ab/Cry2Aj and G10-EPSPS, Cry1Ab and EPSPS, respectively, all of which target the Asian corn borer.  The oriental armyworm Mythimna separata (Walker) is the secondary target.  In this study, the effects of the three Bt maizes on the development and survival of armyworm were studied.  The results showed that IE09S034 had insecticidal activity against 1st instar larvae, and the survival rate of armyworm fed with Bt maize for 10 days was 46.2%, significantly lower than that of the control.  The larvae at 3rd–6th instar were more tolerant of the Bt toxin than the early instar larvae.  However, Shuangkang 12-5 had good insecticidal activity against 1st–5th instar larvae.  The mortality was nearly 100% when the larvae were fed with Shuangkang 12-5 before 3rd instar, and the toxin had quick-acting efficacy.  This event significantly inhibited the development of armyworm; that is, the larval duration of the 3rd and 4th instar larvae fed with Shuangkang 12-5 was prolonged by 4.5 and 3.0 days, respectively.  The pupal weight and egg number were also significantly lower than those of the control.  For C0030.3.5, it could control 1st–5th instar larvae effectively.  The mortality rates were all over 50% if 1st–3rd larvae were fed with this event.  The pupal weight of 4th–6th instar larvae fed with Bt maize were only 53.9, 56.8 and 54.6%, respectively, compared to that of the control.  The number of eggs laid was significantly less than the control.  The results indicate that all three transgenic maize events exhibit the potential to provide effective control of early instar larvae of armyworm, which can be commercialized in future to control lepidoptera pests such as Asian corn borer and armyworm.
 
Reference | Related Articles | Metrics
Volatiles from Sophora japonica flowers attract Harmonia axyridis adults (Coleoptera: Coccinellidae)
XIU Chun-li, XU Bin, PAN Hong-sheng, ZHANG Wei, YANG Yi-zhong, LU Yan-hui
2019, 18 (4): 873-883.   DOI: 10.1016/S2095-3119(18)61927-6
Abstract266)      PDF (1027KB)(297)      
The multicolored Asian lady beetle, Harmonia axyridis (Coleoptera: Coccinellidae), is a common generalist predator in China and is occasionally found gathering on the Chinese pagoda tree, Sophora japonica, in summer.  In a field investigation, we found that H. axyridis adults preferred S. japonica during its flowering period even though their optimal prey (aphid) is absent at this time.  In addition, male and female adults were attracted to S. japonica flowers to a similar extent in a Y-tube olfactometer assay.  Using coupled gas chromatography-electroantennogram detection (GC-EAD), we identified a flower odor component (nonanal) that elicited a significant electrophysiological response in H. axyridis.  Electroantennogram (EAG) dose-dependent responses revealed that the amplitude of the adult beetle’s EAG response increased with increasing concentration of nonanal, peaking at 10 mg mL–1.  In Y-tube olfactometer behavioral tests, H. axyridis adults preferred a 10 mg mL–1 nonanal source over a 100 mg mL–1 diluent.  Under field conditions, the adults were significantly attracted to both concentrations (10 and 100 mg mL–1), and high concentrations generally had greater attraction.  All these results suggest that nonanal, a volatile compound of S. japonica flowers, greatly attracts H. axyridis adults.  This study provides a basis for the development of synthetic attractants of H. axyridis, with the potential to promote biocontrol services of this generalist predator in the native area (e.g., China) and to suppress its population by mass trapping in its invasive areas. 
Reference | Related Articles | Metrics
Milk production and composition and metabolic alterations in the mammary gland of heat-stressed lactating dairy cows
FAN Cai-yun, SU Di, TIAN He, HU Rui-ting, RAN Lei, YANG Ying, SU Yan-jing, CHENG Jian-bo
2019, 18 (12): 2844-2854.   DOI: 10.1016/S2095-3119(19)62834-0
Abstract138)      PDF in ScienceDirect      
This experiment was conducted to investigate the effects of heat stress (HS) on the feed intake, milk production and composition and metabolic alterations in the mammary gland of dairy cows.  Twenty Holstein cows were randomly assigned to one of two treatments according to a completely randomized design.  Half of the cows were allocated to the HS group in August (summer season), and the other half were assigned to the HS-free group in November (autumn season).  HS reduced (P<0.01) dry matter intake (DMI), milk yield, milk protein and milk urea nitrogen (MUN) of cows compared with HS-free control, but increased (P<0.01) milk somatic cell counts (SCC).  We determined the HS-induced metabolic alterations and the relevant mechanisms in dairy cows using liquid chromatography mass spectrometry combined with multivariate analyses.  Thirty-four metabolites were identified as potential biomarkers for the diagnosis of HS in dairy cows.  Ten of these metabolites, glucose, lactate, pyruvate, lactose, β-hydroxybutyrate, citric acid, α-ketoglutarate, urea, creatine, and orotic acid, had high sensitivity and specificity for HS diagnoses, and seven metabolites were also identified as potential biomarkers of HS in plasma, milk, and liver.  These substances are involved in glycolysis, lactose, ketone, tricarboxylic acid (TCA), amino acid and nucleotide metabolism, indicating that HS mainly affects lactose, energy and nucleotide metabolism in the mammary gland of lactating dairy cows.  This study suggested that HS might affect milk production and composition by affecting the feed intake and substance metabolisms in the mammary gland tissue of lactating dairy cows.
Reference | Related Articles | Metrics
Effects of lead stress on Vg expression in the beet armyworm over five successive generations
SU Hong-hua, YANG Yong, QIAN Yuan-yuan, YE Zi-bo, CHEN Yu-qing, YANG Yi-zhong
2019, 18 (1): 134-142.   DOI: 10.1016/S2095-3119(18)61931-8
Abstract278)      PDF in ScienceDirect      
Heavy metals have been found to be endocrine disruptors in invertebrates.  Lead is one of the most widespread elements of contamination, but there has been no research about the effects of lead stress on vitellogenin (Vg) gene expression in insects exposed to lead over multiple generations.  In this paper, the effects of different concentrations of lead (0, 0.3, 4.8 and 76.8 mg kg–1) on the expression of Vg in the beet armyworm over five successive generations were studied.  The results showed that lead stress had significant effects on Vg expression in a dose-dependent manner.  For females at the larval and adult stages, as lead concentration increased, Vg expression was significantly inhibited; for males at these two developmental stages, Vg expression was induced and increased as lead concentration increased.  In addition, with the increase over stressed generations, inhibited effects for females and induced effects for males at the larval and adult stages became increasingly more obvious.  However, at the pupal stage, Vg expression in the two genders was different from that at the larval and adult stages.  The results indicate that lead stress can upregulate Vg expression in males which should be a useful indicator for environmental risk assessment.
Reference | Related Articles | Metrics
Phenolic and flavonoid contents of mandarin (Citrus reticulata Blanco) fruit tissues and their antioxidant capacity as evaluated by DPPH and ABTS methods
ZHANG Hua, YANG Yi-fei, ZHOU Zhi-qin
2018, 17 (01): 256-263.   DOI: 10.1016/S2095-3119(17)61664-2
Abstract724)      PDF in ScienceDirect      
The total phenolic and flavonoid contents in the fruit tissues (peels, pulp residues, seeds, and juices) of 19 citrus genotypes belonged to Citrus reticulata Blanco were evaluated and their antioxidant capacity was tested by 2,2-diphenyl-1-picrylhydrazyl radicals (DPPH) method and 2,2´-azino-bis(3-ethylbenzthiozoline-6)-sulphonic acid (ABTS) method.  The total phenolic and flavonoid contents, and their antioxidant capacity varied in different citrus fruit tissues.  Generally, the peel had both the highest average of total phenolics (27.18 mg gallic acid equivalent (GAE) g–1 DW) and total flavonoids (38.97 mg rutin equivalent (RE) g–1 DW).  The highest antioxidant capacity was also the average of DPPH value (21.92 mg vitamin C equivalent antioxidant capacity (VCEAC) g–1 DW) and average of ABTS value (78.70 mg VCEAC g–1 DW) in peel.  The correlation coefficient between the total phenolics and their antioxidant capacity of different citrus fruits tissues ranged from 0.079 to 0.792, and from –0.150 to 0.664 for the total flavonoids.  The antioxidant capacity of fruit tissues were correlated with the total phenoilc content and flavonoid content except in case of the peel.  In addition, the total phenolic content and antioxidant capacity varied in different citrus genotypes.  Manju and Karamandarin were better genotypes with higher antioxidation and the phenolic content, however Shagan was the poorest genotype with lower antioxidation and the phenolic content.
Reference | Related Articles | Metrics
Hepatitis associated with hepatitis B virus in broilers
ZHAO Yue, MAO Jing-jing, SHE Rui-ping, HU Feng-jiao, Majid H Soomro, LIANG Rui-ping, YANG Yi-fei, DU Fang, WANG Tong-tong, GUO Zhao-jie, CHENG Min-heng
2016, 15 (1): 191-199.   DOI: 10.1016/S2095-3119(14)60914-X
Abstract1645)      PDF in ScienceDirect      
Infection by hepatitis B virus (HBV) results in acute and chronic liver damages in humans. Liver products of broilers as a primary food consumed in our daily life have a close connection with public health. The prevalence of the virus in livers and serum of broilers is of great significance, owning to the potential transmission between chickens and humans. Liver tissues and serum samples were tested to investigate the prevalence of hepatitis B virus infection in slaughtered broilers, for expression of HBV antigens and antibodies. The distribution and positive rate of hepatitis B surface antigen (HBsAg), hepatitis B core antigen (HBcAg) and hepatitis B e antigen (HBeAg) in liver samples were examined using immunohistochemistry. HBsAg was mainly located in the cytoplasm of hepatocytes with a positivity of 81.61% whereas HBeAg and HBcAg were primarily located in the nucleus of hepatocytes with a positivity of 40.13 and 49.10%, respectively. Enzyme-linked immunosorbent assay (ELISA) analysis of serum for HBV serological markers demonstrated a high prevalence of hepatiits B surface antibody (HBsAb, 54.91%) and hepatitis B core antibody (HBcAb, 27.68%), whereas HBeAb, HBsAg and HBeAg were rarely detectable. Classic hepatitis pathological changes, including swollen hepatocytes, focal parenchymal necrosis, lymphocytic infiltration and hyperplasia of fibrous connective tissues were observed using histopathological analysis. Some of the liver samples were found positive for HBV DNA using nested PCR. Sequence comparison confirmed that all sequences shared 97.5–99.3% identity with human HBV strains. These results demonstrated the existence of HBV in livers and serums of broilers. Animals or animal products contaminated with HBV could raise an important public health concern over food safety and zoonotic risk.
Reference | Related Articles | Metrics
Effects of Nitrogen Application Rate and Ratio on Lodging Resistance of Super Rice with Different Genotypes
ZHANG Wu-jun, LI Gang-hua, YANG Yi-ming, LI Quan, ZHANG Jun, LIU Jin-you, WANG Shao-hua, TANG She , DING Yan-feng
2014, 13 (1): 63-72.   DOI: 10.1016/S2095-3119(13)60388-3
Abstract2140)      PDF in ScienceDirect      
The objective of this study was to determine the morphology mechanism of nitrogen (N) fertilizer rates and ratio on lodging resistance through analying its effects among lodging index (LI), lodging-related morphological traits and physical strength in basal internodes by comparing japonica and indica super rice cultivars. Field experiments, with three nitrogen levels (0, 150 and 300 kg ha-1) and two ratios of basal to topdressing (8:2 and 5:5) with two super rice cultivars (Yliangyou 2 and Wuyunjing 23), were conducted in the Baolin Farm, Danyang Country, Jiangsu Province, China, in 2011 and 2012. Effects of N fertilizer rates and ratios on morphology of whole plant, morphology traits in basal internodes and culm’s physical strength parameters were investigated at 20 d after full heading stage. LI of Yliangyou 2 was significant greater than that of Wuyunjing 23 due to larger bending moment by whole plant (WP) with higher plant height and gravity center height. With higher volume of N fertilizer, LI of two super rice cultivars was increased conspicuously. However, no significant effect was detected with increase of panicle fertilizer ratio. The size of breaking strength (M) in basal internodes was the key factor determining LI among N fertilizer treatments. Correlation analysis revealed that M value was positively related bending stress (BS) of Wuyunjing 23 and section modulus (Z) of Yliangyou 2, respectively. The higher N fertilizer levels induced reduction of BS of Wuyunjing 23 due to weak culm and leaf sheath plumpness status and reduced Z of Yliangyou 2 owning to small diameter and culm wall thickness, consequently, influencing their M indirectly. These results suggested that breaking strength was the key factor influencing LI with increase of N fertilizer levels. However, the lodging-related morphology mechanism was different with genotypes. Culm wall thickness and diameter in basal internodes of indica super rice and culm and leaf sheath plumpness status of japonica super rice influenced breaking strength, as well as lodging index, respectively.
Reference | Related Articles | Metrics
Reducing Dietary Cation-Anion Difference on Acid-Base Balance, Plasma Minerals Level and Anti-Oxidative Stress of Female Goats
WU Wen-xuan, YANG Yi, ZHANG Ji-kun, LI Sheng-li
2013, 12 (9): 1620-1628.   DOI: 10.1016/S2095-3119(13)60259-2
Abstract2230)      PDF in ScienceDirect      
Reducing dietary cation-anion difference (DCAD) has been proved an effective way to prevent milk fever in dairy cows. Based on the similar physiological gastro-intestinal tract anatomy and metabolic process between female goats and dairy cows, this study was conducted to evaluate the effects of varying DCAD on fluid acid-base status, plasma minerals concentration and anti-oxidative stress capacity of female goats. Urinary pH, plasma Ca, P and Mg; and anti-oxidative stress indices of total superoxide dismutase (T-SOD), hydrogen peroxide (H2O2), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) were determined to evaluate the effect. Forty-eight Guizhou black female goats ((15±1.9) mon of old, (22.3±3.75) kg of BW) were randomly allocated to 4 blocks of 12 goats each and were fed 1 of 4 diets differed in DCAD level (calculated as Na+K-Cl-S, mEq kg-1 DM). Levels of DCAD were preliminarily designed to be control (+150 mEq kg-1 DM, CON), high DCAD (+300 mEq kg-1 DM, HD), low DCAD (0 mEq kg-1 DM, LD) and negative DCAD (-150 mEq kg-1 DM, ND), respectively. A commercial anionic salts (Animate) and sodium bicarbonate (NaHCO3) were supplemented to reduce and increase DCAD level, respectively. There was no difference in dry matter intake for 4 groups of goats. Urine pH was aggressively decreased (P<0.0001) with reduced DCAD and there was a strong association between DCAD and urine pH (R2=0.793, P<0.0001). Compared with CON and HD feeding of LD and ND resulted in greater (P<0.05) plasma Ca concentration. Plasma P level was increased (P<0.05) when anionic salts were supplemented. The DCAD alteration did not affected (P>0.05) plasma Mg level. There was no significant (P>0.05) difference in plasma GSH-Px activity and H2O2, but anionic salts supplementation in LD and ND significantly increased (P<0.05) plasma T-SOD activity and tended to reduce MDA (P<0.1) over HD and CON. Results from this study indicated that reducing DCAD could decrease urine pH and increase plasma Ca concentration of female goats. Additionally, reducing DCAD was helpful to enhance anti-oxidative stress capability of female goats.
Reference | Related Articles | Metrics
ZmCals12 impacts the maize growth and development by regulating symplastic transport
Ziwen Shi, Sheng Zhang, Qing He, Xiaoyuan Wang, Bo yang, Tao Yu, Hongyang Yi, Tingzhao Rong, Moju Cao
DOI: 10.1016/j.jia.2024.05.010 Online: 29 May 2024
Abstract34)      PDF in ScienceDirect      
Carbohydrate partitioning from source to sink tissues is critical for plant growth and development. However, in maize (Zea mays L.), the molecular mechanisms of callose synthase gene regulating this process have seldom been reported.  Here, we show that the mutation of maize callose synthase12 (ZmCals12) caused increased accumulation of carbohydrate in the photosynthetic leaves but reduced carbohydrate content in sink tissues, which led to plant dwarfing and male sterile.  Histochemical GUS activity assay and mRNA in situ hybridization (ISH) indicated that ZmCals12 was mainly expressed in the vascular transport system.  Loss-of-function of ZmCals12 reduced callose synthase activity and callose deposition in plasmodesmatas (PDs) and around phloem cells (PCs) of vascular bundle.  The drop-and-see (DANS) assay revealed that the PD permeability in the photosynthetic cells and the transport competence of leaf veins were reduced in the Zmcals12 mutants, which led to the reduced symplastic transport.  Paraffin section experiment revealed that less-developed vascular cells (VCs) in the Zmcals12 mutants potentially disturbed sugar transport, thus resulting in the pleiotropic phenotype of the Zmcals12 mutants.  In addition, the impaired sugar transport hindered the internode development by inhibiting auxin (IAA) biosynthesis and signaling in the Zmcals12 mutant.  Collectively, our results provide insights into the mechanism of ZmCals12-mediated callose deposition and symplastic transport governing maize growth and development.
Reference | Related Articles | Metrics