Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (9): 2759-2771    DOI: 10.1016/j.jia.2022.10.009
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Novel 18β-glycyrrhetinic acid amide derivatives show dual-acting capabilities for controlling plant bacterial diseases through ROS-mediated antibacterial efficiency and activating plant defense responses
SONG Ying-lian, LIU Hong-wu, YANG Yi-hong, HE Jing-jing, YANG Bin-xin, YANG Lin-li, ZHOU Xiang, LIU Li-wei, WANG Pei-yi, YANG Song#
National Key Laboratory of Green Pesticide/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education/Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

长期以来天然产物为新型农用化学品的发现提供了重要来源灵感。在众多的天然产物中,18β-甘草次酸具有广谱生物活性,更为新药发现提供了重要的活性骨架。为了拓展18β-甘草次酸的农业用途,制备了一系列新型18β-甘草次酸酰胺衍生物并评价抗菌性能。以水稻黄单胞菌、柑橘溃疡病菌、猕猴桃溃疡病菌为测试菌株,采用浊度法测试了目标化合物的离体抗菌活性;采用盆栽实验,评估了目标化合物对水稻白叶枯病的防治效果;采用透射电镜对细菌的表型进行了初步验证;借助活性氧实验验证化合物对病原菌活性氧的干扰效果;结合防御酶实验探究化合物对植物防御酶活性的调控性能。通过抗菌活性实验表明,化合物5k对水稻白叶枯病菌(Xoo)具有较好的离体抑菌活性(EC50 = 3.64 mg L-1)和优异的活体保护活性(54.68%)进一步通过活性氧实验和表型验证,化合物5k能造成病原菌体内活性氧过量产生和积累,并进一步破坏病原菌的细胞膜。更值得注意的是,化合物5k提升包括过氧化氢酶、超氧化物歧化酶、过氧化物酶和苯丙氨酸解氨酶在内的植物防御酶的活性。实验结果表明,制备的18β-甘草次酸酰胺衍生物能通过破坏病原菌的氧化还原平衡并激活植物的防御系统共同发挥其控制植物细菌性病害的潜力。



Abstract  

Natural products have long been a crucial source of, or provided inspiration for new agrochemical discovery.  Naturally occurring 18β-glycyrrhetinic acid shows broad-spectrum bioactivities and is a potential skeleton for novel drug discovery.  To extend the utility of 18β-glycyrrhetinic acid for agricultural uses, a series of novel 18β-glycyrrhetinic acid amide derivatives were prepared and evaluated for their antibacterial potency.  Notably, compound 5k showed good antibacterial activity in vitro against Xanthomonas oryzae pv. oryzae (Xoo, EC50=3.64 mg L–1), and excellent protective activity (54.68%) against Xoo in vivo.  Compound 5k induced excessive production and accumulation of reactive oxygen species in the tested pathogens, resulting in damaging the bacterial cell envelope.  More interestingly, compound 5k could increase the activities of plant defense enzymes including catalase, superoxide dismutase, peroxidase, and phenylalanine ammonia lyase.  Taken together, these enjoyable results suggested that designed compounds derived from 18β-glycyrrhetinic acid showed potential for controlling intractable plant bacterial diseases by disturbing the balance of the phytopathogen’s redox system and activating the plant defense system

Keywords:  18β-glycyrrhetinic acid       antibacterial activities        defense enzyme activity        reactive oxygen species  
Received: 25 April 2022   Accepted: 02 September 2022
Fund: We greatly appreciate the fundings provided by the National Natural Science Foundation of China (21877021 and 32160661), the Guizhou Provincial S&T Program [(2018)4007], and the Program of Introducing Talents of Discipline to Universities of China (D20023, 111 Program).  
About author:  SONG Ying-lian, E-mail: 1049469216@qq.com; #Correspondence YANG Song, Tel: +86-851-88292171, E-mail: jhzx.msm@gmail.com

Cite this article: 

SONG Ying-lian, LIU Hong-wu, YANG Yi-hong, HE Jing-jing, YANG Bin-xin, YANG Lin-li, ZHOU Xiang, LIU Li-wei, WANG Pei-yi, YANG Song. 2023. Novel 18β-glycyrrhetinic acid amide derivatives show dual-acting capabilities for controlling plant bacterial diseases through ROS-mediated antibacterial efficiency and activating plant defense responses. Journal of Integrative Agriculture, 22(9): 2759-2771.

Apel K, Hirt H. 2004. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology55, 373−399.

Appert C, Logemann E, Hahlbrock K, Schmid J, Amrhein N. 1994. Structural and catalytic properties of the four phenylalanine ammonia-lyase isoenzymes from parsley (Petroselinum crispum Nym.). European Journal of Biochemistry225, 491−499.

Baker D D, Chu M, Oza U, Rajgarhia V. 2007. The value of natural products to future pharmaceutical discovery. Natural Product Reports24, 1225−1244.

Bassil K L, Vakil C, Sanborn M, Cole, D C, Kaur J S, Kerr K J. 2007. Cancer health effects of pesticides: Systematic review. Canadian Family Physician53, 1704–1711.

Belenky P, Jonathan D Y, Porter C B, Cohen N R, Lobritz M A, Ferrante T, Collins J J. 2015. Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage. Cell Report13, 968−980.

Bodet C, La V D, Gafner S, Bergeron C, Grenier D. 2008. A licorice extract reduces lipopolysaccharide-induced proinflammatory cytokine secretion by macrophages and whole blood. Journal of Periodontology79, 1752−1761.

Cai Y, Xu Y Q, Chan H F, Fang X B, He C W, Chen M W. 2016. Glycyrrhetinic acid mediated drug delivery carriers for hepatocellular carcinoma therapy. Molecular Pharmaceutics13, 699−709.

Chen H J, Kang S P, Lee I J, Lin Y L, 2014. Glycyrrhetinic acid suppressed NF-κB activation in TNF-α-induced hepatocytes. Journal of Agricultural and Food Chemistry62, 618–625.

Chen H M, Liu H Z, Tang B, Chen Y C, Han L, Yu J J, Yan Y H, Lu C J. 2020. The protective effects of 18β-glycyrrhetinic acid on imiquimod-induced psoriasis in mice via suppression of mTOR/STA-T3 signaling. Journal of Immunology Research2020, 1–9.

Diallinas G, Kanellis A K. 1994. A phenylalanine ammonia-lyase gene from melon fruit: cDNA cloning, sequence and expression in response to development and wounding. Plant Molecular Biology26, 473–479.

Dixon R A, Pavia N L. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell7, 1085–1097.

He F C, Shi J, Wang Y J, Wang S B, Chen J X, Gan X H, Song B A, Hu D Y. 2019. Synthesis, antiviral activity, and mechanisms of purine nucleoside derivatives containing a sulfonamide moiety. Journal of Agricultural and Food Chemistry67, 8459–8467.

He S S, Lin Q, Qu M K, Wang L Y, Deng L, Xiao L Y, Zhang Z R, Zhang L. 2018. Liver-targeted co-delivery of entecavir and glycyrrhetinic acid based on albumin nanoparticle to enhance the accumulation of entecavir. Molecular Pharmaceutics15, 3953–3961.

Huang G L, Lv M J, Hu J C, Huang K L, Xu H. 2016. Glycosylation and activities of natural products. Mini-Reviews in Medicinal Chemistry16, 1013–1016.

Huang L R, Hao X J, Li Q J, Wang D P, Zhang J X, Luo H, Yang X S. 2016. 18β-Glycyrrhetinic acid derivatives possessing a trihydroxylated a ring are potent Gram-positive antibacterial agents. Journal of Natural Products79, 721–731.

Huang N, Angeles E R, Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadivel N, Bennett J, Khush G S. 1997. Pyramiding of bacterial blight resistance genes in rice: Marker-assisted selection using RFLP and PCR. Theoretical and Applied Genetics95, 313–320.

Isbrucker R A, Burdock G A. 2006. Risk and safety assessment on the consumption of Licorice root (Glycyrrhiza sp.), its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin. Regulatory Toxicology and Pharmacology46, 167–192.

Iwai C B, Sujira H, Somparn A, Komarova T, Mueller J, Noller B. 2007. Monitoring pesticides in the paddy field ecosystem of north-eastern thailand for environmental and health risks. Rational Environmental Management of Agrochemicals996, 259–273.

Jiang S C, Su S J, Chen M, Peng F, Zhou Q, Liu T T, Liu L W, Xue W. 2020. Antibacterial activities of novel dithiocarbamate-containing 4H-Chromen-4-one derivatives. Journal of Agricultural and Food Chemistry68 , 5641–5647.

Kalaiarasi P, Pugalendi K.V. 2009. Antihyperglycemic effect of 18β-glycyrrhetinic acid, aglycone of glycyrrhizin, on streptozotocin-diabetic rats. European Journal of Pharmacology606, 269–273.

Khare E, Mishra J, Arora N K. 2018. Multifaceted interactions between endophytes and plant: Developments and prospects. Frontiers in Microbiology9, 2732.

Lawton M A, Lamb C J. 1987. Transcriptional activation of plant defense genes by fungal elicitor, wounding and infection. Molecular and Cellular Biology7, 335–341.

Li H W, Sun J Q, Xiao S L, Zhang L H, Zhou D M. 2020. Triterpenoid-mediated inhibition of virus–host interaction: Is now the time for discovering viral entry/release inhibitors from nature? Journal of Medicinal Chemistry63, 15371–15388.

Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer S V, Machado M A, Toth I, Salmond G, Foster G D. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology13, 614–629.

Markov A V, Sen’kova A V, Popadyuk II, Salomatina O V, Logashenko E B, Komarova N I, Ilyina A A, Salakhutdinov N F, Zenkova M A. 2020. Novel 3’-substituted-1’,2’,4’-oxadiazole derivatives of 18βH-glycyrrhetinic acid and their o-acylated amidoximes: Synthesis and evaluation of antitumor and anti-inflammatory potential in vitro and in vivoInternational Journal of Molecular Sciences21, 3511.

Molina-Torres J, Salazar-Cabrera C J, Armenta-Salinas C, Ramírez-Chávez E. 2004. Fungistatic and bacteriostatic activities of alkamides from Heliopsis longipes roots: Affinin and reduced amides. Journal of Agricultural and Food Chemistry52, 4700–4704.

Pan X Y, Xu S, Wu J, Luo J Y, Duan Y B, Wang J X, Zhang F, Zhou M G. 2018. Screening and characterization of Xanthomonas oryzae pv. oryzae strains with resistance to pheazine-1-carboxylic acid. Pesticide Biochemistry and Physiology145, 8–14.

Rigano L A, Siciliano F, Enrique R, Sendín L, Filippone P, Torres P S, Questa J, Dow J M, Castagnaro A P, Vojnov A A, Marano M R. 2007. Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citriMolecular Plant–Microbe Interactions20, 1222–1230.

Sanborn M, Kerr K J, Sanin L H, Cole D C, Bassil K L, Vakil C. 2007. Non-cancer health effects of pesticides: Systematic review and implications for family doctors. Canadian Family Physician53, 1712–1720.

Sanchez-Ballesta M T, Zacarias L, Granell A, Lafuente M T. 2000. Accumulation of PAL transcript and PAL activity as affected by heat-conditioning and low-temperature storage and its relation to chilling sensitivity in mandarin fruits. Journal of Agricultural and Food Chemistry48, 2726−2731.

Schmid C, Dawid C, Peters V, Hofmann T. 2018. Saponins from european licorice roots (Glycyrrhiza glabra). Journal of Natural Products81, 1734–1744.

Vida P, Moretto A. 2007. Pesticide exposure pathways among children of agricultural workers. Journal of Public Health15, 289–299.

Wang C Y, Kao T C, Lo W H, Yen G C. 2011. Glycyrrhizic acid and 18β-glycyrrhetinic acid modulate lipopolysaccharide-induced inflammatory response by suppression of NF-κB through PI3K p110δ and p110γ inhibitions. Journal of Agricultural and Food Chemistry59, 7726–7733.

Wang M W, Zhu H H, Wang P Y, Zeng D, Wu Y Y, Liu L W, Wu Z B, Li Z, Yang S. 2019. Synthesis of thiazolium-labeled 1, 3,4-oxadiazole thioethers as prospective antimicrobials: In vitro and in vivo bioactivity and mechanism of action. Journal of Agricultural and Food Chemistry67, 12696–12708.

Wang P Y, Xiang M, Luo M, Liu H W, Zhou X, Wu Z B, Liu L W, Li Z, Yang S. 2020. Novel piperazine-tailored ursolic acid hybrids as significant antibacterial agents targeting phytopathogens Xanthomonas oryzae pv. oryzae and Xaxonopodis pv. citri probably directed by activation of apoptosis. Pest Management Science76, 2746–2754.

Wu C H, Chen A Z, Yen G C. 2015. Protective effects of glycyrrhizic acid and 18β-glycyrrhetinic acid against cisplatin-induced nephrotoxicity in BALB/c mice. Journal of Agricultural and Food Chemistry63, 1200–1209.

Xiang M, Song Y L, Ji J, Zhou X, Liu L W, Wang P Y, Wu Z B, Li Z, Yang S. 2020. Synthesis of novel 18β-glycyrrhetinic piperazine amides displaying significant in vitro and in vivo antibacterial activities against intractable plant bacterial diseases. Pest Management Science76, 2959–2971.

Xiang M, Zhou X, Luo T R, Wang P Y, Liu L W, Li Z, Wu Z B, Yang S. 2019. Design, synthesis, antibacterial evaluation, and induced apoptotic behaviors of epimeric and chiral 18β-glycyrrhetinic acid ester derivatives with an isopropanolamine bridge against phytopathogens. Journal of Agricultural and Food Chemistry67, 13212–13220.

Xu Y, Zhu X F, Zhou M G, Kuang J, Zhang Y, Shang Y, Wang J X. 2010. Status of streptomycin resistance development in Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola in China and their resistance characters. Journal of Phytopathology158, 601–608.

Yamaguchi H, Kidachi Y, Kamiie K, Noshita T, Umetsu H. 2012. Structural insight into the ligand-receptor interaction between glycyrrhetinic acid (GA) and the high-mobility group protein B1 (HMGB1)-DNA complex. Bioinformation8, 1147–1153.

Yang D Y, Zhao B, Fan Z J, Yu B, Zhang N, Li Z, Zhu Y, Zhou J, Kalinina T A, Glukhareva T V. 2019. Synthesis and biological activity of novel succinate dehydrogenase inhibitor derivatives as potent fungicide candidates. Journal of Agricultural and Food Chemistry67, 13185–13194.

Yang T, Zhang T, Zhou X, Wang P Y, Gan J, Song B A, Yang S, Yang C. G. 2021. Dysregulation of ClpP by small-molecule activators used against Xanthomonas oryzae pv. oryzae infections. Journal of Agricultural and Food Chemistry69, 7545–7553.

Yang Y, Zhu Q Y, Zhong Y Y, Cui X P, Jiang Z Y, Wu P P, Zheng X, Zhang K, Zhao S Q. 2020. Synthesis, anti-microbial and anti-inflammatory activities of 18β-glycyrrhetinic acid derivatives. Bioorganic Chemistry101, 103985.

Yoon J K, Cao X D, Zhou Q X, Ma L Q. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment368, 456–464.

Zhou X, Feng Y M, Qi P Y, Shao W B, Wu Z B, Liu L W, Wang Y, Ma H D, Wang P Y, Li Z, Yang S. 2020. Synthesis and docking study of N-(Cinnamoyl)-N´-(substituted) acryloyl hydrazide derivatives containing pyridinium moieties as a novel class of filamentous temperature-sensitive protein Z inhibitors against the intractable Xanthomonas oryzae pv. oryzae infections in rice. Journal of Agricultural and Food Chemistry68, 8132–8142.

Zhou X, Ye H J, Gao X H, Feng Y M, Shao W B, Qi P Y, Wu Z B, Liu L W, Wang P Y, Yang S. 2021. The discovery of natural 4’-demethylepipodophyllotoxin from renewable Dysosma versipellis species as a novel bacterial cell division inhibitor for controlling intractable diseases in rice. Industrial Crops and Products174, 114182.

Zhou X Z, Zhao L, Liu X M, Li X Q, Jia F, Zhang Y Y, Wang, Y J. 2012. Antimycobacterial and synergistic effects of 18β-glycyrrhetinic acid or glycyrrhetinic acid-30-piperazine in combination with isoniazid, rifampicin or streptomycin against Mycobacterium bovisPhytotherapy Research26, 253–258.

Zhu X F, Xu Y, Peng D, Zhang Y, Huang T T, Wang J X, Zhou M G. 2013. Detection and characterization of bismerthiazol-resistance of Xanthomonas oryzae pv. oryzaeCrop Protection47, 24–29.

Zígolo M A, Salinas M, Alché L, Baldessari A, Liñares G G. 2018. Chemoenzymatic synthesis of new derivatives of glycyrrhetinic acid with antiviral activity. Molecular docking study. Bioorganic Chemistry78, 210–219.

[1] ZHAO Ying-jia, ZHANG Yan-yang, BAI Xin-yang, LIN Rui-ze, SHI Gui-qing, DU Ping-ping, XIAO Kai. TaNF-YB11, a gene of NF-Y transcription factor family in Triticum aestivum, confers drought tolerance on plants via modulating osmolyte accumulation and reactive oxygen species homeostasis[J]. >Journal of Integrative Agriculture, 2022, 21(11): 3114-3130.
No Suggested Reading articles found!