Phosphorus (P) is a finite natural resource and is increasingly considered to be a challenge for global sustainability. Agriculture in China plays a key role in global sustainable P management. Rhizosphere and soil-based P management are necessary for improving P-use efficiency and crop productivity in intensive agriculture in China. A previous study has shown that the future demand for phosphate fertilizer by China estimated by the LePA model (legacy phosphorus assessment model) can be greatly reduced by soil-based P management (the building-up and maintenance approach). The present study used the LePA model to predict the phosphate demand by China through combined rhizosphere and soil-based P management at county scale under four P fertilizer scenarios: (1) same P application rate as in 2012; (2) rate maintained same as 2012 in low-P counties or no P fertilizer applied in high-P counties until targeted soil Olsen-P (TPOlsen) level is reached, and then rate was the same as P-removed at harvest; (3) rate in each county decreased to 1–7 kg ha–1 yr–1 after TPOlsen is reached in low-P counties, then increased by 0.1–9 kg ha–1 yr–1 until equal to P-removal; (4) rate maintained same as 2012 in low-P counties until TPOlsen is reached and then equaled to P-removal, while the rate in high-P counties is decreased to 1–7 kg ha–1 yr–1 until TPOlsen is reached and then increased by 0.1–9 kg ha–1 yr–1 until equal to P-removal. Our predictions showed that the total demand for P fertilizer by whole China was 693 Mt P2O5 and according to scenario 4, P fertilizer could be reduced by 57.5% compared with farmer current practice, during the period 2013–2080. The model showed that rhizosphere P management led to a further 8.0% decrease in P fertilizer use compared with soil-based P management. The average soil Olsen-P level in China only needs to be maintained at 17 mg kg–1 to achieve high crop yields. Our results provide a firm basis for government to issue-relevant policies for sustainable P management in China.
Caprine arthritis-encephalitis virus (CAEV) is an under-studied virus infecting caprines and ovines worldwide. Over the last four decades, CAEV has spread in China, obtaining genomic data on CAEV strains circulating in China is of importance for developing diagnostic methods and eradicating associated diseases. However, there is limited information on the genome, including characterizations, and the probable origin. This work aimed to characterize Chinese CAEV genomes and population structures. Five CAEV strains isolated from infected dairy goats between 1989 and 1994 in Gansu, Guizhou, Shaanxi, Shandong and Sichuan provinces were cloned and sequenced. The Chinese CAEV had a 58–93% genome similarities to strains outside of China, and they belonged to subgenotype B1. The highest similarity levels (98.3–99.3%) were with two other Chinese strains, and they shared a 91.8–92.3% similarity with the strain Clements (GenBank accession no. NC_001463.1) from outside of China. The Chinese CAEV strains isolated from different provinces over five years were still highly homologous and contained unique ancestral population components, indicating that these Chinese strains had a common origin that differed from other known strains. Our results provide genomic data on circulating Chinese CAEV strains and will be useful for future epidemiological investigations and CAEV eradication programs.
In situ mRNA hybridization (ISH) is a powerful tool for examining the spatiotemporal expression of genes in shoot apical meristems and flower buds of cucumber. The most common ISH protocol uses paraffin wax; however, embedding tissue in paraffin wax can take a long time and might result in RNA degradation and decreased signals. Here, we developed an optimized protocol to simplify the process and improve RNA sensitivity. We combined embedding tissue in low melting-point Steedman’s wax with processing tissue sections in solution, as in the whole-mount ISH method in the optimized protocol. Using the optimized protocol, we examined the expression patterns of the CLAVATA3 (CLV3) and WUSCHEL (WUS) genes in shoot apical meristems and floral meristems of Cucumis sativus (cucumber) and Arabidopsis thaliana (Arabidopsis). The optimized protocol saved 4–5 days of experimental period compared with the standard ISH protocol using paraffin wax. Moreover, the optimized protocol achieved high signal sensitivity. The optimized protocol was successful for both cucumber and Arabidopsis, which indicates it might have general applicability to most plants
Sex determination in plants gives rise to unisexual flowers. A better understanding of the regulatory mechanism underlying the production of unisexual flowers will help to clarify the process of sex determination in plants and allow researchers and farmers to harness heterosis. Androecious cucumber (Cucumis sativus L.) plants can be used as the male parent when planted alongside a gynoecious line to produce heterozygous seeds, thus reducing the cost of seed production. The isolation and characterization of additional androecious genotypes in varied backgrounds will increase the pool of available germplasm for breeding. Here, we discovered an androecious mutant in a previously generated ethyl methanesulfonate (EMS)-mutagenized library of the cucumber inbred line ‘406’. Genetic analysis, whole-genome resequencing, and molecular marker-assisted verification demonstrated that a nonsynonymous mutation in the ethylene biosynthetic gene 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE 11 (ACS11) conferred androecy. The mutation caused an amino acid change from serine (Ser) to phenylalanine (Phe) at position 301 (S301F). In vitro enzyme activity assays revealed that this S301F mutation leads to a complete loss of enzymatic activity. This study provides a new germplasm for use in cucumber breeding as the androecious male parent, and it offers new insights into the catalytic mechanism of ACS enzymes.
Understanding the characteristics and influences of various factors on phosphorus (P) fractions is of significance for promoting the efficiency of soil P. Based on long-term experiments on black soil, fluvo-aquic soil, and loess soil, which belong to Phaeozems, Cambisols, and Anthrosols in the World Reference Base for Soil Resources (WRB), respectively, five fertilization practices were selected and divided into three groups: no P fertilizer (CK/NK), balanced fertilizer (NPK/NPKS), and manure plus mineral fertilizer (NPKM). Soil inorganic P (Pi) fractions and soil properties were analyzed to investigate the characteristics of the Pi fractions and the relationships between Pi fractions and various soil properties. The results showed that the proportion of Ca10-P in the sum of total Pi fractions was the highest in the three soils, accounting for 33.5% in black soil, 48.8% in fluvo-aquic soil, and 44.8% in loess soil. Long-term fertilization practices resulted in periodic changes in soil Pi accumulation or depletion. For black soil and fluvo-aquic soil, the Pi accumulation was higher in the late period (10–20 years) of fertilization than in the early period (0–10 years) under NPK/NPKS and NPKM, whereas the opposite result was found in loess soil. The Pi accumulation occurred in all Pi fractions in black soil; mainly in Ca8-P, Fe-P, and Ca10-P in fluvo-aquic soil; and in Ca2-P, Ca8-P, and O-P in loess soil. Under CK/NK, the soil Pi was depleted mainly in the early period in each of the three soils. In addition to the labile Pi (Ca2-P) and moderately labile Pi (Ca8-P, Fe-P, Al-P), the Ca10-P in black soil and fluvo-aquic soil and O-P in loess soil could also be used by crops. Redundancy analysis showed that soil properties explained more than 90% of the variation in the Pi fractions in each soil, and the explanatory percentages of soil organic matter (SOM) were 43.6% in black soil, 74.6% in fluvo-aquic, and 38.2% in loess soil. Consequently, decisions regarding the application of P fertilizer should consider the accumulation rate and the variations in Pi fractions driven by soil properties in non-acidic soils.