导航切换
Journal of Integrative Agriculture
JIA Home
About JIA
Description
Video introduction
Editor-in-chief
Editorial board
Guideline of JIA editorial board
Editorial board
Youth Editorial Board
For authors
Instruction for authors
Title page
Copyright agreement
Templates
Endnote
Subscription
Contact
Journals
Publication Years
Keywords
Search within results
(((NIE Jun[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
Title
Author
Institution
Keyword
Abstract
PACS
DOI
Please wait a minute...
For Selected:
Download Citations
EndNote
Ris
BibTeX
Toggle Thumbnails
Select
The effects of co-utilizing green manure and rice straw on soil aggregates and soil carbon stability in a paddy soil in southern China
ZHANG Zi-han, NIE Jun, LIANG Hai, WEI Cui-lan, WANG Yun, LIAO Yu-lin, LU Yan-hong, ZHOU Guo-peng, GAO Song-juan, CAO Wei-dong
2023, 22 (
5
): 1529-1545. DOI:
10.1016/j.jia.2022.09.025
Abstract
(
260
)
PDF in ScienceDirect
The co-utilization of green manure (GM) and rice straw (RS) in paddy fields has been widely applied as an effective practice in southern China. However, its effects on soil aggregate and soil organic carbon (SOC) stability remain unclear. In the present study, the effect of GM, RS, and co-utilization of GM and RS on particle size distribution of soil aggregates and SOC density fractions were measured in a field experiment. The experiment included six treatments, i.e., winter fallow (WF) without RS return (Ctrl), WF with 50% RS return (1/2RS), WF with 100% RS return (RS), GM without RS return (GM), GM with 50% RS return (GM1/2RS) and GM with 100% RS return (GMRS). The results showed that the proportion of small macro-aggregates (0.25–2 mm) and the mean weight diameter (MWD) of aggregates in the GMRS treatment was greater (by 18.9 and 3.41%, respectively) than in the RS treatment, while the proportion of silt+clay particles (<0.053 mm) was lower (by 14.4%). The concentration of SOC in microaggregates (0.053–0.25 mm) and silt+clay particles was higher in the GMRS treatment than in GM and RS treatments individually. The concentration and proportion of free light organic carbon (fLOC) in aggregates of various particle sizes and bulk soil was greater in the GMRS treatment than the RS treatment, whereas the concentration and proportion of mineral-associated organic carbon in small macroaggregates, microaggregates, and bulk was lower in the GMRS treatment than in the RS treatment. The proportion of intra-aggregate particulate organic carbon (iPOC) was greater in the GMRS treatment than in GM treatment. The GMRS treatment had strong positive effects on iPOC in small macroaggregates, suggesting that SOC was transferred from fLOC to iPOC. In conclusion, co-utilizing green manure and rice straw cultivated the SOC pool by increasing the concentration of fLOC and improved soil carbon stability by promoting the sequestration of organic carbon in iPOC as a form of physical protection.
Reference
|
Related Articles
|
Metrics
Select
Effects of plant density and nitrogen rate on cotton yield and nitrogen use in cotton stubble retaining fields
WANG Shi-hong, MAO Li-li, SHI Jia-liang, NIE Jun-jun, SONG Xian-liang, SUN Xue-zhen
2021, 20 (
8
): 2090-2099. DOI:
10.1016/S2095-3119(20)63323-8
Abstract
(
149
)
PDF in ScienceDirect
Increasing nitrogen (N) rate could accelerate the decomposition of crop residues, and then improve crop yield by increasing N availability of soil and N uptake of crops. However, it is not clear whether N rate and plant density should be modified after a long period of cotton stubble return with high N rate. This study seeks to assess the effects of N rate and plant density on cotton yield, N use efficiency, leaf senescence, soil inorganic N, and apparent N balance in cotton stubble return fields in Liaocheng, China, in 2016 and 2017. Three plant densities 5.25 (D
5.25
), 6.75 (D
6.75
) and 8.25 (D
8.25
) plants m
–2
and five N rates 0 (N
0
), 105 (N
105
), 210 (N
210
), 315 (N
315
), and 420 (N
420
) kg ha
–1
were investigated. Compared to the combination used by local farmers (D
5.25
N
315
), a 33.3% N reduction and a 28.6% increase in plant density (D
6.75
N
210
) can maintain high cotton yield, while a 66.7% N reduction at 6.75 plants m
–2
(D
6.75
N
105)
can only achieve high yield in the first year. Biological yield increased with the increase of N rate and plant density, and the highest yield was obtained under 420 kg N ha
–1
at 8.25 plants m
–2
(D
8.25
N
420
) across the two years under investigation. Compared to D
5.25
N
315
, N agronomic efficiency (NAE) and N recovery efficiency (NRE) in D
6.75
N
210
increased by 30.2 and 54.1%, respectively, and NAE and NRE in D
6.75
N
210
increased by 104.8 and 88.1%, respectively. Soil inorganic N decreased sharply under 105 kg N ha
–1
, but no change was found under 210 kg N ha
–1
at 6.75 plants m
–2
. N deficit occurred under 105 kg N ha
–1
, but it did not occurr under 210 kg N ha
–1
at 6.75 plants m
–2
. Net photosynthetic rate and N concentration of leaves under N rate ranging from 210 to 420 kg ha
–1
were higher than those under N rate of 0 or 105 kg N ha
–1
at all three densities. The findings suggest that D
6.75
N
210
is a superior combination in cotton stubble retaining fields in the Yellow River Valley and other areas with similar ecologies.
Reference
|
Related Articles
|
Metrics
Select
Management of rice straw with relay cropping of Chinese milk vetch improved double-rice cropping system production in southern China
ZHOU Xing, LIAO Yu-lin, LU Yan-hong, Robert M. REES, CAO Wei-dong, NIE Jun, LI Mei
2020, 19 (
8
): 2103-2115. DOI:
10.1016/S2095-3119(20)63206-3
Abstract
(
112
)
PDF in ScienceDirect
Improved utilization of rice (
Oryza sativa
L.) straw and Chinese milk vetch (
Astragalus sinicus
L., vetch) has positive effects on rice production. So far, few studies have investigated the productivity of vetch under different residue management practices in double-rice cropping system. The effects of rice straw on the growth and nutrient accumulation of vetch across seven years (2011–2017) and the subsequent effects of rice straw and vetch on two succeeding rice crops in a vetch–rice–rice cropping system, with the vetch established by relay cropping, were examined. The seven-year double-rice experiment consisted of the following treatments: (1) 100% chemical fertilizer (F-F100); (2) only vetch without chemical fertilizer (M-Con); (3) 80% chemical fertilizer plus vetch plus a low-cutting height (low-retained stubble) with the removal of straw (M-F80); (4) 80% chemical fertilizer plus vetch plus a low-cutting height with the retention of straw (M-F80-LR); (5) 80% chemical fertilizer plus vetch plus a high-cutting height (high-retained stubble) with the retention of straw (M-F80-HR); and (6) no fertilizer (F-Con). The yields of the two rice crops after vetch were not affected by either the cutting height of stubble with retention of straw or by the management of straw (retention vs. removal) with low-cutting height of stubble. The yields of the two rice crops after vetch were significantly higher for M-F80-HR than for M-F80-LR, but the relative contributions of the high-cutting height and straw retention to the higher rice yield could not be determined in this study. The yield stability of the double-rice grain in M-F80-HR was also increased, as determined by a sustainable yield index. Significant increases in vetch biomass and nutrient uptake were observed in the fertilized treatments during the rice season compared with the unfertilized treatments. In M-F80-HR plots, improvements in the growing environment of the vetch by conserving soil water content were associated with the highest vetch biomass, nutrient uptake, and yield stability of vetch biomass. These increased nutrient inputs partially replaced the demand for chemical fertilizer and stimulated the rice yields. It can be concluded that retaining higher-cutting stubble residues with straw retention could be the best straw management practice for increasing the vetch biomass and nutrient use efficiency, thereby allowing utilization of high-cutting height with retention of straw and vetch to improve the stability of rice productivity in a double-rice cropping system.
Related Articles
|
Metrics
Select
Spatial distribution of bolls affects yield formation in different genotypes of Bt cotton varieties
NIE Jun-jun, YUAN Yan-chao, QIN Du-lin, LIU Yan-hui, WANG Shuang-lei, LI Jin-pu, ZHANG Mei-ling, ZHAO Na, GUO Wen-jun, QI Jie, MAO Li-li, SONG Xian-liang, SUN Xue-zhen
2019, 18 (
11
): 2492-2504. DOI:
10.1016/S2095-3119(19)62617-1
Abstract
(
149
)
PDF in ScienceDirect
To optimize the spatial distribution of cotton bolls and to increase the yield, the relationship between yield components and boll spatial distribution was investigated among different Bt (
Bacillus thuringensis
) cotton varieties. A five-year field experiment was conducted to reveal the reasons for the differences in lint yield and fiber quality across three Bt cotton varieties with different yield formations from 2013 to 2017. The lint yield of Jiman 169 (the average yield from 2013–2017 was 42.2 g/plant) was the highest, i.e., 16.3 and 36.9% higher than Lumianyan 21 (L21) and Daizimian 99B (99B), respectively. And the differences in boll weight among the three cultivars were similar to the lint yield, while the others yield components were not. So the increase in lint yield was mainly attributed to the enlargement in boll weight. However, the change in fiber quality was inconsistent with the lint yield, and the quality of L21 was significantly better than that of Jimian 169 (J169) and 99B, which was caused by the diversity of boll spatial distribution. Compared with 99B, the loose-type J169 had the highest number of large bolls in inner positions; the tight-type L21 had a few large bolls and the highest number of lower and middle bolls. And approximately 80.72% of the lint yield was concentrated on the inner nodes in Jiman 169, compared with 77.44% of L21 and 66.73% of 99B during the five-year experiment. Although lint yield was significantly affected by the interannual changes, the lint yield of J169 was the highest and the most stable, as well as its yield components. These observations demonstrated the increase in lint yield was due to the increase in boll weight, and the large bolls and high fiber quality were attributed to the optimal distribution of bolls within the canopies.
Reference
|
Related Articles
|
Metrics
Select
Substitution of chemical fertilizer by Chinese milk vetch improves the sustainability of yield and accumulation of soil organic carbon in a double-rice cropping system
ZHOU Xing, LU Yan-hong, LIAO Yu-lin, ZHU Qi-dong, CHENG Hui-dan, NIE Xin, CAO Wei-dong, NIE Jun
2019, 18 (
10
): 2381-1392. DOI:
10.1016/S2095-3119(18)62096-9
Abstract
(
212
)
PDF in ScienceDirect
The double-rice cropping system is a very important intensive cropping system for food security in China. There have been few studies of the sustainability of yield and accumulation of soil organic carbon (SOC) in the double-rice cropping system following a partial substitution of chemical fertilizer by Chinese milk vetch (Mv). We conducted a 10-year (2008–2017) field experiment in Nan County, South-Central China, to examine the double-rice productivity and SOC accumulation in a paddy soil in response to different fertilization levels and Mv application (22.5 Mg ha
–1
). Fertilizer and Mv were applied both individually and in combination (sole chemical fertilizers, Mv plus 100, 80, 60, 40, and 0% of the recommended dose of chemical fertilizers, labeled as F100, MF100, MF80, MF60, MF40, and MF0, respectively). It was found that the grain yields of double-rice crop in treatments receiving Mv were reduced when the dose of chemical fertilizer was reduced, while the change in SOC stock displayed a double peak curve. The MF100 produced the highest double-rice yield and SOC stock, with the value higher by 13.5 and 26.8% than that in the F100. However, the grain yields increased in the MF80 (by 8.4% compared to the F100), while the SOC stock only increased by 8.4%. Analogous to the change of grain yield, the sustainable yield index (SYI) of double rice were improved significantly in the MF100 and MF80 compared to the F100, while there was a slight increase in the MF60 and MF40. After a certain amount of Mv input (22.5 Mg ha
–1
), the carbon sequestration rate was affected by the nutrient input due to the stimulation of microbial biomass. Compared with the MF0, the MF100 and MF40 resulted in a dramatically higher carbon sequestration rate (with the value higher by 71.6 and 70.1%), whereas the MF80 induced a lower carbon sequestration rate with the value lower by 70.1% compared to the MF0. Based on the above results we suggested that Mv could partially replace chemical fertilizers (e.g., 40–60%) to improve or maintain the productivity and sustainability of the double-rice cropping system in South-Central China.
Reference
|
Related Articles
|
Metrics
Select
Effects of Long-Term Winter Planted Green Manure on Distribution and Storage of Organic Carbon and Nitrogen in Water-Stable Aggregates of Reddish Paddy Soil Under a Double-Rice Cropping System
YANG Zeng-ping, ZHENG Sheng-xian, NIE Jun, LIAO Yu-lin, XIE Jian
2014, 13 (
8
): 1772-1781. DOI:
10.1016/S2095-3119(13)60565-1
Abstract
(
1373
)
PDF in ScienceDirect
In agricultural systems, maintenance of soil organic matter has long been recognized as a strategy to reduce soil degradation. Manure amendments and green manures are management practices that can increase some nutrient contents and improve soil aggregation. We investigated the effects of 28 yr of winter planted green manure on soil aggregate-size distribution and aggregateassociated carbon (C) and nitrogen (N). The study was a randomized completed block design with three replicates. The treatments included rice-rice-fallow, rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass. The experiment was established in 1982 on a silty light clayey paddy soil derived from Quaternary red clay (classified as Fe-Accumuli-Stagnic Anthrosols) with continuous early and late rice. In 2009, soil samples were collected (0-15 cm depth) from the field treatment plots and separated into water-stable aggregates of different sizes (i.e., >5, 2-5, 1-2, 0.5-1, 0.25-0.5 and <0.25 mm) by wet sieving. The long-term winter planted green manure significantly increased total C and N, and the formation of the 2-5-mm water-stable aggregate fraction. Compared with rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass, the rice-rice-fallow significantly reduced 2-5-mm water-stable aggregates, with a significant redistribution of aggregates into micro-aggregates. Long-term winter planted green manure obviously improved C/N ratio and macro-aggregate-associated C and N. The highest contribution to soil fertility was from macro-aggregates of 2-5 mm in most cases.
Reference
|
Related Articles
|
Metrics
Select
Long-Term Effect of Fertilizer and Rice Straw on Mineral Composition and Potassium Adsorption in a Reddish Paddy Soil
LIAO Yu-lin, ZHENG Sheng-xian, NIE Jun, XIE Jian, LU Yan-hong , QIN Xiao-bo
2013, 12 (
4
): 694-710. DOI:
10.1016/S2095-3119(13)60288-9
Abstract
(
1583
)
PDF in ScienceDirect
Increasing K+ adsorption can be an effective alternative in building an available K pool in soils to optimize crop recovery and minimize losses into the environment. We hypothesized that long-term fertilization might change K+ adsorption because of changes in the chemical and mineralogical properties of a rice (Oryza sativa L.). The aims of this study were (i) to determine clay minerals in paddy soil clay size fractions using X-ray diffraction methods and a numerical diagramdecomposition method; (ii) to measure K+ adsorption isotherms before and after H2O2 oxidation of organic matter, and (iii) to investigate whether K+ adsorption is correlated with changes in soil chemical and mineral properties. The 30-yr longterm fertilization treatments caused little change in soil organic C (SOC) but a large variation in soil mineral composition. The whole-clay fraction (<5 μm) corresponded more to the fertilization treatment than the fine-clay fraction (<1 μm) in terms of percentage of illite peak area. The total percentage of vermiculite-chlorite peak area was significantly negatively correlated with the total percentage of illite peak area in the <5 μm soil particles (R=-0.946, P<0.0006). Different fertilization treatments gave significantly different results in K+ adsorption. The SOC oxidation test showed positive effects of SOC on K+ adsorption at lower K+ concentration ( 120 mg L-1) and negative effects at higher K+ concentration (240 mg L-1). The K+ adsorption by soil clay minerals after SOC oxidization accounted for 60-158% of that by unoxidized soils, suggesting a more important role of soil minerals than SOC on K+ adsorption. The K+ adsorption potential was significantly correlated to the amount of poorly crystallized illite present (R=0.879, P=0.012). The availability of adsorbed K+ for plant growth needs further study.
Reference
|
Related Articles
|
Metrics
Select
Spatial Distribution of Soil Organic Matter and Nutrients in the Pear Orchard Under Clean and Sod Cultivation Models
XU Ling-fei, ZHOU Peng, HAN Qing-fang, LI Zhi-hui, YANG Bao-ping , NIE Jun-feng
2013, 12 (
2
): 344-351. DOI:
10.1016/S2095-3119(13)60234-8
Abstract
(
1494
)
PDF in ScienceDirect
The soil organic matter and nutrients are fundamental for the sustainability of pear production, but little is known about the spatial distribution of soil organic matter and nutrients in a pear orchard. With the soil of the pear (cv. Dangshansu on P.betulifolia Bunge. rootstock) orchard under clean and sod cultivation models as test materials, the experiment was conducted to evaluate spatial variability of soil organic matter (SOM), total nitrogen (STN), total phosphorus (STP), total potassium (STK), available nitrogen (SAN), and available potassium (SAK) in and between rows at different soil depths (0-60 cm). The SOM, STN, STP, STK, SAN and SAK of the different soil layers under the two tillage models were different in the vertical direction. The SOM, STN, STP and SAN in the 0-20 cm soil layer were higher than those in the 20-40 and 40- 60 cm soil layers. The STK of 40-60 cm soil layer was higher than that in the 0-20 and 20-40 cm soil layers. The STK increased with the depth of soil in the vertical direction in the clean cultivated pear orchard. Variability of the SOM, STN, STP, STK, SAN and SAK of sample sites in between rows of the same soil layer was found in the pear orchard soil in the horizontal direction under clean and sod cultivation management systems, except that STK of all sites did not show the difference in identical soil layers in the pear orchard under clean cultivation. The sod cultivation model improved the SOM, STN, and STK in the 0-20 cm soil layer in the pear orchard, and the three components increased by 12.8, 12.7 and 7.3% compared to clean cultivation, respectively. The results can be applicable to plan collection of orchard soil samples, assess orchard soil quality, and improve orchard soil management practices.
Reference
|
Related Articles
|
Metrics
Select
Effects of Long-Term Winter Planted Green Manure on Physical Properties of Reddish Paddy Soil Under a Double-Rice Cropping System
YANG Zeng-ping, XU Ming-gang, ZHENG Sheng-xian, NIE Jun, GAO Ju-sheng, LIAO Yu-lin , XIE Jian
2012, 12 (
4
): 655-664. DOI:
10.1016/S1671-2927(00)8586
Abstract
(
2126
)
PDF in ScienceDirect
Soil physical properties are important indicators of the potential for agricultural production. Our objective was to evaluate the effects of long-term inputs of green manures on physical properties of a reddish paddy soil (Fe-Typic Hapli-Stagnic Anthrosols) under a double cropping system. The common cropping pattern before the study was early-late rice-fallow (winter). The field treatments included rice-rice-fallow (R-R-WF), rice-rice-rape (R-R-RP), rice-rice-Chinese milk vetch (RR- MV), and rice-rice-ryegrass (R-R-RG). The rape, Chinese milk vetch and ryegrass were all incorporated as green manures 15 d before early rice transplanting during the following year. The soil bulk density in all green manure treatments was significantly reduced compared with the winter fallow treatment. Soil porosity with green manure applications was significantly higher than that under the winter fallow. The green manure treatments had higher 0.25-5 mm water stable aggregates and aggregates stabilities in the plow layer (0-15 cm depth) compared with the fallow treatment. The mean weight diameter (MWD) and normalized mean weight diameter (NMWD) of aggregates in the green manure treatment were larger than that with the winter fallow. Soil given green manure retained both a higher water holding capacity in the plow layer soil, and a larger volume of moisture at all matric potentials (-10, -33 and -100 kPa). We conclude that the management of double-rice fields in southern central China should be encouraged to use green manures along with chemical fertilizers to increase SOC content, improve soil physical properties and soil fertility.
Reference
|
Related Articles
|
Metrics