Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Fate of fertilizer nitrogen and residual nitrogen in paddy soil in Northeast China
BI Shi-ting, LUO Xiang-yu, ZHANG Chen, LI Peng-fei, YU Cai-lian, LIU Zhi-lei, PENG Xian-long
2023, 22 (11): 3535-3548.   DOI: 10.1016/j.jia.2023.06.010
Abstract202)      PDF in ScienceDirect      

The relationship between the fate of nitrogen (N) fertilizer and the N application rate in paddy fields in Northeast China is unclear, as is the fate of residual N.  To clarify these issues, paddy field and 15N microplot experiments were carried out in 2017 and 2018, with N applications at five levels: 0, 75, 105, 135 and 165 kg N ha–1 (N0, N75, N105, N135 and N165, respectively).  15N-labeled urea was applied to the microplots in 2017, and the same amount of unlabeled urea was applied in 2018.  Ammonia (NH3) volatilization, leaching, surface runoff, rice yield, the N contents and 15N abundances of both plants and soil were analyzed.  The results indicated a linear platform model for rice yield and the application rate of N fertilizer, and the optimal rate was 135 kg N ha–1.  N uptake increased with an increasing N rate, and the recovery efficiency of applied N (REN) values of the difference subtraction method were 45.23 and 56.98% on average in 2017 and 2018, respectively.  The REN was the highest at the N rate of 135 kg ha–1 in 2017 and it was insignificantly affected by the N application rate in 2018, while the agronomic efficiency of applied N (AEN) and physiological efficiency of applied N (PEN) decreased significantly when excessive N was applied.  N loss through NH3 volatilization, leaching and surface runoff was low in the paddy fields in Northeast China.  NH3 volatilization accounted for 0.81 and 2.99% of the total N application in 2017 and 2018, respectively.  On average, the leaching and surface runoff rates were 4.45% and less than 1.05%, respectively, but the apparent denitrification loss was approximately 42.63%.  The residual N fertilizer in the soil layer (0–40 cm) was 18.37–31.81 kg N ha–1 in 2017, and the residual rate was 19.28–24.50%.  Residual 15N from fertilizer in the soil increased significantly with increasing N fertilizer, which was mainly concentrated in the 0–10 cm soil layer, accounting for 58.45–83.54% of the total residual N, and decreased with increasing depth.  While the ratio of residual N in the 0–10 cm soil layer to that in the 0–40 cm soil layer was decreased with increasing N application.  Furthermore, of the residual N, approximately 5.4% was taken up on average in the following season and 50.2% was lost, but 44.4% remained in the soil.  Hence, the amount of applied N fertilizer should be reduced appropriately due to the high residual N in paddy fields in Northeast China.  The appropriate N fertilizer rate in the northern fields in China was determined to be 105–135 kg N ha–1 in order to achieve a balance between rice yield and high N fertilizer uptake.

Reference | Related Articles | Metrics
Effects of grape seed extract on meat color and premature browning of meat patties in high-oxygen packaging
YANG Xiao-yin, XU Bao-chen, LEI Hong-mei, LUO Xin, ZHU Li-xian, ZHANG Yi-min, MAO Yan-wei, LIANG Rong-rong
2022, 21 (8): 2445-2455.   DOI: 10.1016/S2095-3119(21)63854-6
Abstract267)      PDF in ScienceDirect      

This study investigated the effects of grape seed extract (GSE) on fresh and cooked meat color and premature browning (PMB) in ground meat patties (85% beef and 15% pork back fat) packaged under high-oxygen modified atmospheres (HiOx-MAP).  The GSE was added to patties at concentrations of 0, 0.10, 0.25, 0.50 and 0.75 g kg–1.  This study evaluated the surface color, pH, lipid oxidation, and total viable counts (TVC) of raw patties, and the internal color and pH of patties cooked to a temperature of 66 or 71°C over 10-day storage at 4°C.  Compared with the control (0 g kg–1 GSE), GSE improved the color stability (P<0.05) and significantly inhibited the lipid and myoglobin oxidation of raw patties from day 5 to 10, but GSE had no effect (P>0.05) on TVC.  Patties containing 0.50 and 0.75 g kg–1 GSE cooked to 66°C exhibited greater (P<0.05) interior redness than the control and reduced the PMB of cooked patties in the late storage stage.  These results suggested that 0.50 and 0.75 g kg–1 GSE can improve fresh meat color and minimize PMB of HiOx-MAP patties.

Reference | Related Articles | Metrics
Effects of mechanized deep placement of nitrogen fertilizer rate and type on rice yield and nitrogen use efficiency in Chuanxi Plain, China
ZHU Cong-hua, OUYANG Yu-yuan, DIAO You, YU Jun-qi, LUO Xi, ZHENG Jia-guo, LI Xu-yi
2021, 20 (2): 581-592.   DOI: 10.1016/S2095-3119(20)63456-6
Abstract191)      PDF in ScienceDirect      
This paper investigates the yield and nitrogen use efficiency (NUE) of machine-transplanted rice cultivated using mechanized deep placement of N fertilizer in the rice–wheat rotation region of Chuanxi Plain, China. It provides theoretical support for N-saving and improves quality and production efficiency of machine-transplanted rice. Using a single-factor complete randomized block design in field experiments in 2018 and 2019, seven N-fertilization treatments were applied, with the fertilizer being surface broadcast and/or mechanically placed beside the seedlings at (5.5±0.5) cm soil depth when transplanting. The treatments were: N0, no N fertilizer; U1, 180 kg N ha–1 as urea, surface broadcast manually before transplanting; U2, 108 kg N ha–1 as urea, surface broadcast manually before transplanting, and 72 kg N ha–1 as urea surface broadcast manually on the 10th d after transplanting, which is not only the local common fertilization method, but also the reference treatment; UD, 180 kg N ha–1 as urea, mechanically deep-placed when transplanting; M1, 81.6 kg N ha–1 as urea and 38.4 kg N ha–1 as controlled-release urea (CRU), mechanically deep-placed when transplanting; M2, 102 kg N ha–1 as urea and 48 kg N ha–1 as CRU, mechanically deep-placed when transplanting; M3, 122.4 kg N ha–1 as urea and 57.6 kg N ha–1 as CRU, mechanically deep-placed when transplanting. The effects of the N fertilizer treatments on rice yield and NUE were consistent in the 2 yr. With a N application rate of 180 kg ha–1, compared with U2, the N recovery efficiency (NRE), N agronomic use efficiency (NAE) and yield under the UD treatment were 20.6, 3.5 and 1.1% higher in 2018, and 4.6, 1.7 and 1.2% higher in 2019, respectively. Compared with urea alone (U1, U2 or UD), the NRE, NAE and yield achieved by M3 (combined application of urea and controlled-release urea) were higher by 9.2–73.3%, 18.6–61.5% and 6.5–16.5% (2018), and 22.2–65.2%, 25.6–75.0% and 5.9–13.9% (2019), respectively. Compared with M3, the lower-N treatments M1 and M2 significantly increased NRE by 4.0–7.8% in 2018 and 3.1–4.3% in 2019, respectively. Compared with urea surface application (U1 or U2), the yield under the M2 treatment was higher by 4.3–12.9% in 2018 and 3.6–10.1% in 2019, respectively. Compared with U2, the NRE and NAE under the M2 treatment was higher by 36.9 and 36.3% in 2018, and 33.2 and 37.4% in 2019, mainly because of higher N uptake. There was no significant difference in the concentration of nitrate in the top 0–20 cm soil under U1, U2 and M2 treatments during the full heading and maturity stages. During the full heading stage, U2 produced the highest concentration of nitrite in 0–20 cm and 20–40 cm soil among the N fertilizer treatments. In conclusion, mechanized deep placement of mixed urea and controlled-release urea (M2) at transplanting is a highly-efficient cultivation technology that enables increased yield of machine-transplanted rice and improved NUE, while reducing the amount of N-fertilization applied.
Reference | Related Articles | Metrics
Compact plant type rice has higher lodging and N resistance under machine transplanting
DING Chao, LUO Xi-kun, WU Qiong, LU Bo, DING Yan-feng, WANG Shao-hua, LI Gang-hua
2021, 20 (1): 65-77.   DOI: 10.1016/S2095-3119(20)63229-4
Abstract131)      PDF in ScienceDirect      
To identify the major factors that contribute to the difference in lodging among different rice varieties under machine transplanting and their responses to nitrogen (N), field experiments were conducted at Danyang County (a representative eco-site of the Lower Yangtze River) in Jiangsu Province, China in 2017 and 2018, 22 hybrid indica varieties (HIs), 22 inbred japonica varieties (IJs) and two indica japonica hybrid varieties (IJHs) were transplanted by machine with three N rates (N0, N150 and N300, 0, 150 and 300 kg ha–1, respectively).  Lodging-related physical parameters, morphological characteristics and apparent transport rates of dry matter were examined.  Significant difference in yield was observed among different types of rice, and followed by IJs<HIs<IJHs.  The average lodging index (LI) of hybrid varieties (HIs and IJHs) was higher than that of the inbred varieties (IJs) with higher plant height; moreover, lower apparent export rate of dry matter resulted lower LI in IJHs than in HIs.  The HIs had a large difference in the LI, which came from the difference in bending stress (BS) induced by the difference in the apparent export rate of dry matter, varieties with lower leaf angle of upper three leaves possess strong lodging resistance capacity; however, the gap among the IJs was due to the difference in the cross section modulus (Z).  The LI in the IJs or IJHs increased slightly with the increased N application, and there was no lodging incidence under the high N level, which was due to the low leaf angle and barely changed under high N; there was a significant interaction between varieties (HIs) and N rates in lodging rate and LI, varieties with lower leaf angle of upper three leaves were resistant to high N.  These results suggest that compact plant type rice has higher lodging and N resistance at machine-transplanting method. 
 
Reference | Related Articles | Metrics
Rapid mapping of candidate genes for cold tolerance in Oryza rufipogon Griff. by QTL-seq of seedlings
LUO Xiang-dong, LIU Jian, ZHAO Jun, DAI Liang-fang, CHEN Ya-ling, ZHANG Ling, ZHANG Fan-tao, HU Biao-lin, XIE Jian-kun
2018, 17 (2): 265-275.   DOI: 10.1016/S2095-3119(17)61712-X
Abstract807)      PDF in ScienceDirect      
Cold stress is a major problem in rice production.  To rapidly identify genes for cold tolerance in Dongxiang wild rice (DWR, Oryza rufipogon Griff.), sequencing-based bulked segregant analysis of QTL-seq method was used to resequence the extremely resistant (R) and susceptible (S) bulks of a backcross inbred lines (BILs) population (derived from Oryza sativa×O. rufipogon) and their parents.  Single nucleotide polymorphisms (SNP)-index graphs and corresponding Δ(SNP-index) graphs (at 99 and 95% confidence levels) for R- and S-bulks detected a total of 2 609 candidate SNPs, including 58 candidate cold-tolerance genes.  Quantitative real-time PCR analysis revealed that 5 out of the 58 candidate genes had significant differences in expression between O. sativa and O. rufipogon.  Structural variation and functional annotations of the 5 candidate genes were also analyzed, and allowed us to identify 2 insertion-deletion (InDel) markers (12-7 and 12-16) that were linked with candidate genes on chromosome 12 in DWR.  These results are helpful for cloning and using cold tolerance genes from common wild rice in cultivated rice.
Reference | Related Articles | Metrics
Implications of step-chilling on meat color investigated using proteome analysis of the sarcoplasmic protein fraction of beef longissimus lumborum muscle
ZHANG Yi-min, ZHANG Xiu-ze, WANG Tian-tian, David L. Hopkins, MAO Yan-wei, LIANG Rong-rong, YANG Guang-fu, LUO Xin, ZHU Li-xian
2018, 17 (09): 2118-2125.   DOI: 10.1016/S2095-3119(18)62028-3
Abstract457)      PDF (5571KB)(308)      
In order to improve beef color and color stability, step-chilling (SC) was applied on excised bovine longissimus lumborum muscle, with chilling starting at 0–4°C for 5 h, then holding the temperature at 12–18°C for 6 h, followed by 0–4°C again until 24 h post-mortem.  pH and temperature were measured during rigor on SC loins as well as those subjected to routine chilling (RC, 0–4°C, till 24 h post-mortem).  Color L*, a*, b* values, metmyoglobin (MetMb) content, MetMb reducing ability (MRA) and NADH content were determined on samples aged for 1, 7, and 14 d.  Sarcoplasmic proteome analysis was only conducted on d 1 samples.  The results showed muscles subjected to SC maintained a temperature at around 15°C for 5 to 10 h post-mortem, and exhibited a slow temperature decline, but rapid pH decline.  Beef steaks treated with SC had higher L*, a*, b* and chroma values than those of RC samples at 1 and 7 d chilled storage (0–4°C), while showing no significant difference for a*, b* and chroma values at d 14.  The SC samples also exhibited a lower relative content of surface MetMb, higher MRA and NADH content, compared with RC beef steaks during storage, indicating the SC-treated beef showed an improved color stability.  Eleven differential protein spots/nine proteins were identified by two-dimensional gel electrophoresis and mass spectrometry, and those proteins were mainly involved in redox, chaperone binding, metabolic and peroxidase activity.  Oxidoreductases play a role in decreasing the oxidation-induced myoglobin oxidation and benefiting the production of NADH, and finally improving the colour of beef.  Of these, pyruvate dehydrogenase E1 component subunit beta showed a positive correlation with color L*, a*, b* values and accounted for more than 60% of the variation in color values; this protein can be considered as a potential beef color biomarker.  The present study provided valuable information for studies on the molecular mechanism of color improvement from step-chilling, as well as for identifying markers associated with beef color.
 
Reference | Related Articles | Metrics
Characterisation of pH decline and meat color development of beef carcasses during the early postmortem period in a Chinese beef cattle abattoir
ZHANG Yi-min, David L. Hopkins, ZHAO Xiao-xiao, Remy van de Ven, MAO Yan-wei, ZHU Li-xian, HAN Guang-xing, LUO Xin
2018, 17 (07): 1691-1695.   DOI: 10.1016/S2095-3119(17)61890-2
Abstract600)      PDF in ScienceDirect      
This study investigated the pH/temperature decline of beef carcasses in a typical Chinese abattoir and color development as pH declined during rigor onset.  A natural cubic spline model was used to model the pH/temperature decline for those carcasses which passed through pH 6.0.  Six of the 97 carcasses that exhibited a high (≥6.10) ultimate pH (pHu) (dark-cutting) in the M. longissimus lumborum (LL) were sampled, along with the same numbers of normal pHu and intermediate pHu carcasses (5.40–5.79; 5.80–6.10, respectively), to examine color development within 24 h postmortem.  It was shown that 66.7% of the modeled carcasses were outside the ideal pH/temperature window with a temperature@pH6.0 lower than ideal, suggesting the need for acceleration of the pH decline.  The stable and low a*, b* and chroma values of high pHu beef within the first 12 h indicated dark-cutting beef might be detected earlier than expected.   
Reference | Related Articles | Metrics
Isolation and molecular characterization of the FLOWERING LOCUS C gene promoter sequence in radish (Raphanus sativus L.)
XU Yuan-yuan, WANG Jing, NIE Shan-shan, HUANG Dan-qiong, WANG Yan, XU Liang, WANG Rong-hua, LUO Xiao-bo, LIU Li-wang
2016, 15 (4): 763-774.   DOI: 10.1016/S2095-3119(15)61295-3
Abstract1272)      PDF in ScienceDirect      
Both bolting and flowering times influence taproot and seed production in radish. FLOWERING LOCUS C (FLC) plays a key role in plant flowering by functioning as a repressor. Two genomic DNA sequences, a 3 046-bp from an early- and a 2 959-bp from a late-bolting radish line were isolated and named as RsFLC1 and RsFLC2, respectively, for they share approximately 87.03% sequence identity to the FLC cDNA sequences. The genomic DNA sequences, 1 466-bp and 1 744-bp, flanking the 5´-regions of RsFLC1 and RsFLC2, respectively, were characterized. Since both of them harbor the basic promoter elements, the TATA box and CAAT box, they were designated as PRsFLC1 and PRsFLC2. The transcription start site (TSS) was identified at 424 and 336 bp upstream of the start codon in PRsFLC1 and PRsFLC2, respectively. cis-regulatory elements including CGTCA (MeJA-responsive) and ABRE (abscisic acid-responsive) motifs were found in both promoters, while some cis-regulatory elements including TCA element and GARE-motif were present only in PRsFLC1. These sequence differences lead to the diversity of promoter core elements, which could partially result in the difference of bolting and flowering time in radish line NauDY13 (early-bolting) and Naulu127 (late-bolting). Furthermore, to investigate the activity of these promoters, a series of 5´-deletion fragment-GUS fusions were constructed and transformed into tobacco. GUS activity was detected in PRsFLC1-(1 to 4)-GUS-PS1aG-3 and PRsFLC2-(1 to 4)-GUS-PS1aG-3 transgenic tobacco leaf discs, and this activity progressively decreased from PRsFLC-1-GUS-PS1aG-3 to PRsFLC-5-GUS-PS1aG-3. Deletion analysis indicated that the cis-regulatory elements located at –395 bp to +1 bp may be critical for specifying RsFLC gene transcription.
Reference | Related Articles | Metrics
Linkage map construction and QTL mapping for cold tolerance in Oryza rufipogon Griff. at early seedling stage
LUO Xiang-dong, ZHAO Jun, DAI Liang-fang, ZHANG Fan-tao, ZHOU Yi, WAN Yong, XIE Jian-kun
2016, 15 (12): 2703-2711.   DOI: 10.1016/S2095-3119(16)61465-X
Abstract1012)      PDF in ScienceDirect      
    Cold stress is one of the major restraints for rice production. Cold tolerance is controlled by complex genetic factor. In this study, a backcross inbred lines (BILs) population derived from an inter-specific cross (Oryza sativa L.×O. rufipogon Griff.) was used for genetic linkage map construction and quantitative trait locus (QTL) mapping. A linkage map consisting of 153 markers was constructed, spanning 1 596.8 cM with an average distance of 11.32 cM between the adjacent markers. Phenotypic evaluation of the parents and BILs under (6±1)°C cold stress revealed that the ability of cold tolerance in BILs at early seedling obeyed a skewed normal and continuous distribution. Fifteen QTLs on chromosomes 6, 7, 8, 11, and 12 were identified using survival percent (SP) and non death percent (NDP) as indicators of cold tolerance, which could explain 5.99 to 40.07% of the phenotypic variance, of which the LOD values ranged from 3.04 to 11.32. Four QTLs on chromosomes 3, 5 and 7 were detected using leaf conductivity (LC) and root conductivity (RC) as indicators of cold tolerance, ranging from 19.54 to 33.53% for the phenotypic variance explained and 2.54 to 6.12 for the LOD values. These results suggested that there might be multi major QTLs in O. rufipogon and some useful genes for cold tolerance have been transferred into cultivated rice, which would be helpful for cloning and utilizing the cold tolerance-responsive genes from wild rice.
Reference | Related Articles | Metrics
Biochemical and microbial properties of rhizospheres under maize/ peanut intercropping
LI Qi-song, WU Lin-kun, CHEN Jun, Muhammad A Khan, LUO Xiao-mian, LIN Wen-xiong
2016, 15 (1): 101-110.   DOI: 10.1016/S2095-3119(15)61089-9
Abstract1998)      PDF in ScienceDirect      
Maize/peanut intercropping system shows the significant yield advantage. Soil microbes play major roles in soil nutrient cycling and were affected by intercropping plants. This experiment was carried out to evaluate the changing of rhizosphere microbial community composition, and the relationship between microbial community and soil enzymatic activities, soil nutrients in maize/peanut intercropping system under the following three treatments: maize (Zea mays L.) and peanut (Arachis hypogaea L.) were intercropped without any separation (NS), by half separation (HS) using a nylon net (50 μm) and complete separation (CS) by using a plastic sheet, respectively. The soil microbial communities were assessed by phospholipid fatty acid (PLFA). We found that soil available nutrients (available nitrogen (Avail N) and available phosphorus (Avail P)) and enzymatic activities (soil urase and phosphomonoesterase) in both crops were improved in NS and HS treatments as compared to CS. Both bacterial and fungal biomasses in both crops were increased in NS followed by HS. Furthermore, Gram-positive bacteria (G+) in maize soils were significant higher in NS and HS than CS, while the Gram-negative (G–) was significant higher in peanut soil. The ratio of normal saturated to monounsaturated PLFAs was significantly higher in rhizosphere of peanut under CS treatment than in any other treatments, which is an indicator of nutrient stress. Redundancy analysis and cluster analysis of PLFA showed rhizospheric microbial community of NS and HS of both plants tended to be consistent. The urase and Avail N were higher in NS and HS of both plants and positively correlated with bacteria, fungi (F) and total PLFAs, while negatively correlated with G+/G– and NS/MS. The findings suggest that belowground interactions in maize/peanut intercropping system play important roles in changing the soil microbial composition and the dominant microbial species, which was closely related with the improving of soil available nutrients (N and P) and enzymatic activities.
Reference | Related Articles | Metrics
Genetic Analysis on Characteristics to Measure Drought Resistance Using Dongxiang Wild Rice (Oryza rufupogon Griff.) and Its Derived Backcross Inbred Lines Population at Seedling Stage 
HU Biao-lin, FU Xue-qin, ZHANG Tao, WAN Yong, LI Xia, HUANG Yun-hong, DAI Liang-fang, LUO Xiang-dong , XIE Jian-kun
2011, 10 (11): 1653-1664.   DOI: 10.1016/S1671-2927(11)60164-8
Abstract3696)      PDF in ScienceDirect      
Drought stress is one of the major constraints to rice (Oryza sativa L.) production and yield stability especially in rainfed ecosystems and is getting worse as the climate changes worldwide. Dongxiang wild rice (DXWR) Oryza rufipogon Griff., contains drought resistant gene. Improving drought resistance of cultivars is crucial to increase and stabilize rice grain yield via transferring resistant gene from species related to rice. In this paper, four upland rice, sixty backcross inbred lines (BILs) derived from BC1F5 of R974//DXWR/R974, and their parents were employed to evaluate drought-resistance at seedling stage in the greenhouse. Nine traits were recorded for assessment of drought resistance, including maximum root length (MRL), number of roots (NR), shoot length (SL), dry root weight (DRW), fresh root weight (FRW), root relative water content (RRWC), leaf relative water content (LRWC), level for rolling leaf (LRL), and seedling survivability under repeat drought (SSRD). Using more than 88% of accumulative contribution resulted from the principal component analysis (PCA), the nine traits were classified into five independent principal components and the line 1949 showed the highest resistance. Analysis on the stepwise regression equation and correlation demonstrated that MRL, RN, FRW, and RRWC significantly influenced the drought resistance, thus could be used as comprehensive index for drought resistance at the seedling stage. Using the major gene plus polygene mixed inheritance model of quantitative traits, the inheritance of drought-resistance of BIL population at seedling stage was mostly controlled by two independent genes plus polygene. As a result, the DXWR could be precious resources for genetic improvement of drought resistance in cultivated rice.
Reference | Related Articles | Metrics
Integrated transcriptomic and metabolomic analyses reveal a novel mechanism of resistance to Colletotrichum fructicola in pear
Xiaomei Tang, Yue Wang, Yuqing Guo, Luoluo Xie, Wei Song, Ziwen Xiao, Ruichang Yin, Zhe Ye, Xueqiu Sun, Wenming Wang, Lun Liu, Zhenfeng Ye, Zhenghui Gao, Bing Jia
DOI: 10.1016/j.jia.2024.12.041 Online: 02 January 2025
Abstract11)      PDF in ScienceDirect      

Pear anthracnose, caused by Colletotrichum fructicola, is a devastating disease that seriously affects most pear varieties, thereby compromising their yield and quality. However, effective control of this pathogen is lacking. Moreover, the critical resistance responses to C. fructicola in pear are unknown. To investigate these resistance mechanisms of pear against Colletotrichum fructicola, transcriptomic and metabolomic were performed and analyzed in pear anthracnose-resistant pear variety ‘Seli’ and the susceptible variety ‘Cuiguan’ after infection with C. fructicola, respectively. The differentially expressed genes and differentially accumulated metabolites (DAMs) were mainly related to metabolism and secondary metabolite synthetic pathways, including alpha-linoleic acid metabolism, phenylalanine biosynthesis metabolism, unsaturated fatty acids biosynthesis, and amino acids and derivatives biosynthesis etc. In particular, the accumulation of unsaturated fatty acids, amino acids and derivatives, such as linoleic acid and derivatives, lauric acid, N-acetyl-L-glutamic acid and L-proline was significantly increased in the resistant pear variety ‘Seli’ upon C. fructicola infection, while the amino acids of oxiglutatione and N-acetyl-L-glutamic acid, as well as the proanthocyanidins were significantly decreased in susceptible pear variety ‘Cuiguan’ upon C. fructicola infection, indicating that these metabolites were responsible for the different levels of resistance to anthracnose in ‘Seli’ and ‘Cuiguan’. Overall, our results provided new insights into pear anthracnose resistance regulation, and this may assist in developing new strategies to control pear anthracnose, as well as in breeding anthracnose-resistant varieties.

Reference | Related Articles | Metrics