The fully mulched ridge–furrow (FMRF) system has been widely used on the semi-arid Loess Plateau of China due to its high maize (Zea mays L.) productivity and rainfall use efficiency. However, high outputs under this system led to a depletion of soil moisture and soil nutrients, which reduces its sustainability in the long run. Therefore, it is necessary to optimize the system for the sustainable development of agriculture. The development, yield-increasing mechanisms, negative impacts, optimization, and their relations in the FMRF system are reviewed in this paper. We suggest using grain and forage maize varieties instead of regular maize; mulching plastic film in autumn or leaving the mulch after maize harvesting until the next spring, and then removing the old film and mulching new film; combining reduced/no-tillage with straw return; utilizing crop rotation or intercropping with winter canola (Brassica campestris L.), millet (Setaria italica), or oilseed flax (Linum usitatissimum L.); reducing nitrogen fertilizer and partially replacing chemical fertilizer with organic fertilizer; using biodegradable or weather-resistant film; and implementing mechanized production. These integrations help to establish an environmentally friendly, high quality, and sustainable agricultural system, promote high-quality development of dryland farming, and create new opportunities for agricultural development in the semi-arid Loess Plateau.
PpMAPK6 regulates peach bud endodormancy release through interactions with PpDAM6
The MADS-box (DAM) gene PpDAM6, which is related to dormancy, plays a key role in bud endodormancy release, and the expression of PpDAM6 decreases during endodormancy release. However, the interaction network that governs its regulation of the endodormancy release of flower buds in peach remains unclear. In this study, we used yeast two-hybrid (Y2H) assays to identify a mitogen-activated protein kinase, PpMAPK6, that interacts with PpDAM6 in a peach dormancy-associated SSHcDNA library. PpMAPK6 is primarily located in the nucleus, and Y2H and bimolecular fluorescence complementation (BiFC) assays verified that PpMAPK6 interacts with PpDAM6 by binding to the MADS-box domain of PpDAM6. Quantitative real-time PCR (qRT-PCR) analysis showed that the expression of PpMAPK6 was opposite that of PpDAM6 in the endodormancy release of three cultivars with different chilling requirements (Prunus persica ‘Chunjie’, Prunus persica var. nectarina ‘Zhongyou 5’, Prunus persica ‘Qingzhou peach’). In addition, abscisic acid (ABA) inhibited the expression of PpMAPK6 and promoted the expression of PpDAM6 in flower buds. The results indicated that PpMAPK6 might phosphorylate PpDAM6 to accelerate its degradation by interacting with PpDAM6. The expression of PpMAPK6 increased with decreasing ABA content during endodormancy release in peach flower buds, which in turn decreased the expression of PpDAM6 and promoted endodormancy release.