Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Genome-wide identification and function analysis of the sucrose phosphate synthase MdSPS gene family in apple
ZHANG Li-hua, ZHU Ling-cheng, XU Yu, LÜ Long, LI Xing-guo, LI Wen-hui, LIU Wan-da, MA Feng-wang, LI Ming-jun, HAN De-guo
2023, 22 (7): 2080-2093.   DOI: 10.1016/j.jia.2023.05.024
Abstract241)      PDF in ScienceDirect      

Sucrose phosphate synthase (SPS) is a rate-limiting enzyme that works in conjunction with sucrose-6-phosphate phosphatase (SPP) for sucrose synthesis, and it plays an essential role in energy provisioning during growth and development in plants as well as improving fruit quality.  However, studies on the systematic analysis and evolutionary pattern of the SPS gene family in apple are still lacking.  In the present study, a total of seven MdSPS and four MdSPP genes were identified from the Malus domestica genome GDDH13 v1.1.  The gene structures and their promoter cis-elements, protein conserved motifs, subcellular localizations, physiological functions and biochemical properties were analyzed.  A chromosomal location and gene-duplication analysis demonstrated that whole-genome duplication (WGD) and segmental duplication played vital roles in MdSPS gene family expansion.  The Ka/Ks ratio of pairwise MdSPS genes indicated that the members of this family have undergone strong purifying selection during domestication.  Furthermore, three SPS gene subfamilies were classified based on phylogenetic relationships, and old gene duplications and significantly divergent evolutionary rates were observed among the SPS gene subfamilies.  In addition, a major gene related to sucrose accumulation (MdSPSA2.3) was identified according to the highly consistent trends in the changes of its expression in four apple varieties (‘Golden Delicious’, ‘Fuji’, ‘Qinguan’ and ‘Honeycrisp’) and the correlation between gene expression and soluble sugar content during fruit development.  Furthermore, the virus-induced silencing of MdSPSA2.3 confirmed its function in sucrose accumulation in apple fruit.  The present study lays a theoretical foundation for better clarifying the biological functions of the MdSPS genes during apple fruit development.

Reference | Related Articles | Metrics
Genome-wide analysis of OVATE family proteins in cucumber (Cucumis sativus L.)
HAN Li-jie, SONG Xiao-fei, WANG Zhong-yi, LIU Xiao-feng, YAN Li-ying, HAN De-guo, ZHOU Zhao-yang, ZHANG Xiao-lan
2022, 21 (5): 1321-1331.   DOI: 10.1016/S2095-3119(21)63788-7
Abstract245)      PDF in ScienceDirect      
OVATE family proteins (OFPs) are plant-specific proteins with a conserved OVATE domain that regulate plant growth and development.  Although OFPs have been studied in several species, their biological functions remain largely unknown in cucumber (Cucumis sativus L.).  This study identified 19 CsOFPs distributed on seven chromosomes in cucumber.  Most CsOFP genes were expressed in reproductive organs, but with different expression patterns.  Ectopic expression of CsOFP12-16c in Arabidopsis resulted in shorter and blunt siliques.  The overall results indicated that CsOFP12-16c regulates silique development in Arabidopsis and may have a similar function in cucumber.
Reference | Related Articles | Metrics
Preharvest application of melatonin induces anthocyanin accumulation and related gene upregulation in red pear (Pyrus ussuriensis)
SUN Hui-li, WANG Xin-yue, SHANG Ye, WANG Xiao-qian, DU Guo-dong, LÜ De-guo
2021, 20 (8): 2126-2137.   DOI: 10.1016/S2095-3119(20)63312-3
Abstract200)      PDF in ScienceDirect      
Anthocyanins are important components in the peel of red pears and contribute to the appearance of the fruit.  Melatonin application is known to affect anthocyanin biosynthesis, but the effect of preharvest melatonin application on fruit coloration remains largely unknown.  The objective of this study was to determine the effects of preharvest melatonin application on pigmentation, phenolic compounds, and the expression of related genes in Nanhong pear (Pyrus ussuriensis).  The applications were performed during the pre-color-change period by spraying 50 or 200 μmol L–1 of melatonin on fruits.  We found that treatment with melatonin had a significant effect on color development.  The concentrations of anthocyanins and favonols were enhanced by melatonin treatment, whereas hydroxycinnamate and favanol concentrations were reduced.  Quantitative real-time PCR analyses indicated that the transcription levels for most anthocyanin biosynthetic genes and anthocyanin-related transcription factors were induced by melatonin.  Melatonin application also stimulated the expression of melatonin biosynthesis-related genes and consequently caused an increase in endogenous melatonin concentration.  These results provide insights into melatonin-induced fruit coloration and will facilitate the application of exogenous melatonin in agriculture.
Reference | Related Articles | Metrics
Genome-wide identification and expression analysis of asparagine synthetase family in apple
YUAN Xi-sen, YU Zi-peng, LIU Lin, XU Yang, ZHANG Lei, HAN De-guo, ZHANG Shi-zhong
2020, 19 (5): 1261-1273.   DOI: 10.1016/S2095-3119(20)63171-9
Abstract106)      PDF in ScienceDirect      
Asparagine is an efficient nitrogen transport and storage carrier.  Asparagine synthesis occurs by the amination of aspartate which is catalyzed by asparagine synthetase (ASN) in plants.  Complete genome-wide analysis and classifications of the ASN gene family have recently been reported in different plants.  However, systematic analysis and expression profiles of these genes have not been performed in apple (Malus domestica).  Here, a comprehensive bioinformatics approach was applied to identify MdASNs in apple.  Then, plant phylogenetic tree, chromosome location, conserved protein motif, gene structure, and expression pattern of MdASNs were analyzed.  Five members were identified and distributed on 4 chromosomes with conserved GATase-7 and ASN domains.  Expression analysis indicated that all MdASNs mRNA accumulated at the highest level in reproductive organs, namely flowers or fruits, which may be associated with the redistribution of free amino acids in plant metabolic organs and reservoirs.  Additionally, most of MdASNs were dramatically up-regulated under various nitrogen supplies, especially in the aboveground part.  Taken together, MdASNs may be assigned to be responsible for the nitrogen metabolism and asparagine synthesis in apple.
Reference | Related Articles | Metrics
 YANG Xu-yuan, MA Huai-yu, LIU Guo-cheng, LÜ De-guo, QIN Si-jun , DU Guo-dong
YANG Xu-yuan, MA Huai-yu, LIU Guo-cheng, Lü De-guo, QIN Si-jun , DU Guo-dong
2014, 13 (4): 770-777.   DOI: 10.1016/S2095-3119(13)60409-8
Abstract3614)      PDF in ScienceDirect      
The terminal flower buds of 6-yr-old Hanfu apple were used to study the ovule development, ovular characteristics, cell death of abortive ovules, and dynamic change of starch grain quantity in the embryo sac with paraffin slices and terminal deoxynucleotidyl transferase-mediated fluorescein deoxyuridine triphosphate nick-end labeling (TUNEL) system. Four anatropous ovules in each ventricle could be observed before flowering. With the developing of floral organ, the bulk of normal ovules enlarged in each ventricle, the mature embryo sac differentiated into nucellus, and the egg cell developed into zygote by double fertilization. A large number of starch grains were observed during pollen tube growth and double fertilization, which guaranteed basic nutrient supply in the normal development of ovules. Moreover, abortion phenomenon of runtish ovules emerged at the stages of mature embryo sac, double fertilization and zygote development. The abortion characteristics included deformity of ovule development, degradation of nucellus tissue, separation between funiculus and ovule, abnormality of four-nucleate embryo sac, as well as development interruption of mature embryo sac. TUNEL analysis proved that ovule abortion was programmed cell death.
Reference | Related Articles | Metrics
Variation of Potential Nitrification and Ammonia-Oxidizing Bacterial Community with Plant-Growing Period in Apple Orchard Soil
LIU Ling-zhi, QIN Si-jun, Lü De-guo, WANG Bing-ying , YANG Ze-yuan
2014, 13 (2): 415-425.   DOI: 10.1016/S2095-3119(13)60424-4
Abstract1782)      PDF in ScienceDirect      
In this study, we investigated the potential nitrification and community structure of soil-based ammonia-oxidizing bacteria (AOB) in apple orchard soil during different growth periods and explored the effects of environmental factors on nitrification activity and AOB community composition in the soil of a Hanfu apple orchard, using a culture-dependent technique and denaturing gradient gel electrophoresis (DGGE). We observed that nitrification activity and AOB abundance were the highest in November, lower in May, and the lowest in July. The results of statistical analysis indicated that total nitrogen (N) content, NH4 +-N content, NO3 --N content, and pH showed significant correlations with AOB abundance and nitrification activity in soil. The Shannon-Winner diversity, as well as species richness and evenness indices (determined by PCR-DGGE banding patterns) in soil samples were the highest in September, but the lowest in July, when compared to additional sampled dates. The DGGE fingerprints of soil-based 16S rRNA genes in November were apparently distinct from those observed in May, July, and September, possessing the lowest species richness indices and the highest dominance indices among all four growth periods. Fourteen DGGE bands were excised for sequencing. The resulting analysis indicated that all AOB communities belonged to the β-Proteobacteria phylum, with the dominant AOB showing high similarity to the Nitrosospira genus. Therefore, soil-based environmental factors, such as pH variation and content of NH4 +-N and NO3 --N, can substantially influence the abundance of AOB communities in soil, and play a critical role in soil-based nitrification kinetics.
Reference | Related Articles | Metrics