Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Effect of high-molecular-weight glutenin subunit Dy10 on wheat dough properties and end-use quality
WANG Yan, GUO Zhen-ru, CHEN Qing, LI Yang, ZHAO Kan, WAN Yong-fang, Malcolm J. HAWKESFORD, JIANG Yun-feng, KONG Li, PU Zhi-en, DENG Mei, JIANG Qian-tao, LAN Xiu-jin, WANG Ji-rui, CHEN Guo-yue, MA Jian, ZHENG You-liang, WEI Yu-ming, QI Peng-fei
2023, 22 (6): 1609-1617.   DOI: 10.1016/j.jia.2022.08.041
Abstract423)      PDF in ScienceDirect      
High-molecular-weight glutenin subunits (HMW-GSs) are the most critical grain storage proteins that determine the unique processing qualities of wheat. Although it is a part of the superior HMW-GS pair (Dx5+Dy10), the contribution of the Dy10 subunit to wheat processing quality remains unclear. In this study, we elucidated the effect of Dy10 on wheat processing quality by generating and analyzing a deletion mutant (with the Dy10-null allele), and by elucidating the changes to wheat flour following the incorporation of purified Dy10. The Dy10-null allele was transcribed normally, but the Dy10 subunit was lacking. These findings implied that the Dy10-null allele reduced the glutenin:gliadin ratio and negatively affected dough strength (i.e., Zeleny sedimentation value, gluten index, and dough development and stability times) and the bread-making quality; however, it positively affected the biscuit-making quality. The incorporation of various amounts of purified Dy10 into wheat flour had a detrimental effect on biscuit-making quality. The results of this study demonstrate that the Dy10 subunit is essential for maintaining wheat dough strength. Furthermore, the Dy10-null allele may be exploited by soft wheat breeding programs.
Reference | Related Articles | Metrics
Fatty acid-binding protein gene is indispensable for molting process in Heortia vitessoides (Lepidoptera: Crambidae)
YE Qing-ya, LI Zhi-xing, CHEN Qing-ling, SUN Ming-xu, YIN Ming-liang, LIN Tong
2023, 22 (2): 495-504.   DOI: 10.1016/j.jia.2022.08.003
Abstract291)      PDF in ScienceDirect      

As intracellular fatty acid (FA) carriers, FA-binding proteins (FABPs) widely participate in the absorption, transport, and metabolism of FAs.  It is a key protein in insect lipid metabolism and plays an important role in various physiological activities of insects.  An FABP gene (HvFABP) was cloned from the transcriptional library of Heortia vitessoides Moore (Lepidoptera: Crambidae), and its expression patterns were determined using reverse transcription quantitative PCR (RT-qPCR).  Stage- and tissue-specific expression profiles indicated that HvFABP highly expressed from prepupal to adult stages and in larval midgut and adult wings.  HvFABP expression may be induced through starvation, mRNA expression was downregulated at 24 and 48 h and upregulated at 72 h after starvation.  Furthermore, 20-hydroxyecdysone can induce the upregulation of its expression.  RNA interference-mediated silencing of HvFABP significantly inhibited HvFABP expression, resulting in delayed development, abnormal molting or lethal phenotypes, and a significantly reduced survival rate.  These results indicate that HvFABP plays a key role in the molting of Hvitessoides

Reference | Related Articles | Metrics
Characterization of chromosome segment substitution lines reveals candidate genes associated with the nodule number in soybean
ZOU Jia-nan, ZHANG Zhan-guo, KANG Qing-lin, YU Si-yang, WANG Jie-qi, CHEN Lin, LIU Yan-ru, MA Chao, ZHU Rong-sheng, ZHU Yong-xu, DONG Xiao-hui, JIANG Hong-wei, WU Xiao-xia, WANG Nan-nan, HU Zhen-bang, QI Zhao-ming, LIU Chun-yan, CHEN Qing-shan, XIN Da-wei, WANG Jin-hui
2022, 21 (8): 2197-2210.   DOI: 10.1016/S2095-3119(21)63658-4
Abstract197)      PDF in ScienceDirect      
Soybean is one of the most important food crops worldwide.  Like other legumes, soybean can form symbiotic relationships with Rhizobium species.  Nitrogen fixation of soybean via its symbiosis with Rhizobium is pivotal for sustainable agriculture.  Type III effectors (T3Es) are essential regulators of the establishment of the symbiosis, and nodule number is a feature of nitrogen-affected nodulation.  However, genes encoding T3Es at quantitative trait loci (QTLs) related to nodulation have rarely been identified. Chromosome segment substitution lines (CSSLs) have a common genetic background but only a few loci with heterogeneous genetic information; thus, they are suitable materials for identifying candidate genes at a target locus.  In this study, a CSSL population was used to identify the QTLs related to nodule number in soybean.  Single nucleotide polymorphism (SNP) markers and candidate genes within the QTLs interval were detected, and it was determined which genes showed differential expression between isolines.  Four candidate genes (GmCDPK28, GmNAC1, GmbHLH, and GmERF5) linked to the SNPs were identified as being related to nodule traits and pivotal processes and pathways involved in symbiosis establishment.  A candidate gene (GmERF5) encoding a transcription factor that may interact directly with the T3E NopAA was identified.  The confirmed CSSLs with important segments and candidate genes identified in this study are valuable resources for further studies on the genetic network and T3Es involved in the signaling pathway that is essential for symbiosis establishment. 
Reference | Related Articles | Metrics
Genome-wide identification and characterization of the abiotic-stress-responsive lipoxygenase gene family in diploid woodland strawberry (Fragaria vesca)
LI Zhi-qi, Xie Qian, YAN Jia-hui, CHEN Jian-qing, CHEN Qing-xi
2022, 21 (7): 1982-1996.   DOI: 10.1016/S2095-3119(21)63819-4
Abstract288)      PDF in ScienceDirect      
Lipoxygenase (LOXs) is a kind of dioxygenase without heme and iron, which plays an important role in the development and adaptation of many plants to the environment.  However, the study of strawberry LOX gene family has not been reported.  In this study, 14 LOX genes were identified from the diploid woodland strawberry genome.  The phylogenetic tree divides the FvLOX gene into two subfamilies: 9-LOX and 13-LOX.  Gene duplication event analysis showed that whole-genome duplication (WGD)/segmental duplication and dispersed duplication effectively promoted the expansion of strawberry LOX family.  QRT-PCR analysis showed that FvLOX genes were expressed in different tissues.  Expression profile analysis showed that FvLOX1 and FvLOX8 were up-regulated under low temperature stress, FvLOX3 and FvLOX7 were up-regulated under drought stress, FvLOX6 and FvLOX9 were up-regulated under salt stress, FvLOX2, FvLOX3 and FvLOX6 were up-regulated under salicylic acid (SA) treatment, FvLOX3, FvLOX11 and FvLOX14 were up-regulated under methyl jasmonate (MeJA) treatment, FvLOX4 and FvLOX14 were up-regulated under abscisic acid (ABA) treatment.  Promoter analysis showed that FvLOX genes were involved in plant growth and development and stress response.  We analyzed and identified the whole genome of strawberry FvLOX family and characterized a variety of FvLOX candidate genes involved in abiotic stress response.  This study laid a theoretical and empirical foundation for the response mechanism of strawberry to abiotic stress.
Reference | Related Articles | Metrics
Identification of candidate genes related to soluble sugar contents in soybean seeds using multiple genetic analyses
PAN Wen-jing, HAN Xue, HUANG Shi-yu, YU Jing-yao, ZHAO Ying, QU Ke-xin, ZHANG Ze-xin, YIN Zhen-gong, QI Hui-dong, YU Guo-long, ZHANG Yong, XIN Da-wei, ZHU Rong-sheng, LIU Chun-yan, WU Xiao-xia, JIANG Hong-wei, HU Zhen-bang, ZUO Yu-hu, CHEN Qing-shan, QI Zhao-ming
2022, 21 (7): 1886-1902.   DOI: 10.1016/S2095-3119(21)63653-5
Abstract268)      PDF in ScienceDirect      
Soluble sugar content in seeds is an important quality trait of soybean.  In this study, 57 quantitative trait loci (QTLs) related to soluble sugar contents in soybean seeds were collected from databases and published papers.  After meta-overview-collinearity integrated analysis to refine QTL intervals, eight consensus QTLs were identified.  To further verify the consensus QTLs, a population of chromosome segment substitution lines (CSSLs) was analyzed.  Two lines containing fragments covering the regions of consensus QTLs and the recurrent parent were selected: one line showed high soluble sugar contents associated with a consensus QTL fragment, and the other line showed low soluble sugar contents.  Transcriptome sequencing was conducted for these two lines at the early, middle, and late stages of seed development, which identified 158, 109 and 329 differentially expressed genes, respectively.  Based on the analyses of re-sequencing data of the CSSLs and the consensus QTL region, three candidate genes (Glyma.19G146800, Glyma.19G122500, and Glyma.19G128500) were identified in the genetic fragments introduced from wild soybean.  Sequence comparisons between the two CSSL parents SN14 and ZYD00006 revealed a single nucleotide polymorphism (SNP) mutation in the coding sequence of Glyma.19G122500, causing a non-synonymous mutation in the amino acid sequence that affected the predicted protein structure.  A Kompetitive allele-specific PCR (KASP) marker was developed based on this SNP and used to evaluate the CSSLs.  These results lay the foundation for further research to identify genes related to soluble sugar contents in soybean seeds and for future soybean breeding.
Reference | Related Articles | Metrics
Downregulation of SL-ZH13 transcription factor gene expression decreases drought tolerance of tomato
ZHAO Ting-ting, WANG Zi-yu, BAO Yu-fang, ZHANG Xiao-chun, YANG Huan-huan, ZHANG Dong-ye, JIANG Jing-bin, ZHANG He, LI Jing-fu, CHEN Qing-shan, XU Xiang-yang
2019, 18 (7): 1579-1586.   DOI: 10.1016/S2095-3119(19)62621-3
Abstract293)      PDF in ScienceDirect      
Zinc finger-homeodomain proteins (ZF-HDs) are transcription factors that regulate plant growth, development, and abiotic stress tolerance.  The SL-ZH13 gene was found to be significantly upregulated under drought stress treatment in tomato (Solanum lycopersicum) leaves in our previous study.  In this study, to further understand the role that the SL-ZH13 gene plays in the response of tomato plants to drought stress, the virus-induced gene silencing (VIGS) method was applied to downregulate SL-ZH13 expression in tomato plants, and these plants were treated with drought stress to analyze the changes in drought tolerance.  The SL-ZH13 silencing efficiency was confirmed by quantitative real-time PCR (qRT-PCR) analysis.  In SL-ZH13-silenced plants, the stems wilted faster, leaf shrinkage was more severe than in control plants under the same drought stress treatment conditions, anyd the mean stem bending angle of SL-ZH13-silenced plants was smaller than that of control plants.  Physiological analyses showed that the activity of superoxide dismutase (SOD) and peroxidase (POD) and the content of proline (Pro) in SL-ZH13-silenced plants were lower than those in control plants after 1.5 and 3 h of drought stress treatment.  The malondialdehyde (MDA) content in SL-ZH13-silenced plants was higher than that in control plants after 1.5 and 3 h of drought stress treatment, and H2O2 and O2-· accumulated much more in the leaves of SL-ZH13-silenced plants than in the leaves of control plants.  These results suggested that silencing the SL-ZH13 gene affected the response of tomato plants to drought stress and decreased the drought tolerance of tomato plants. 
Reference | Related Articles | Metrics
A major pathway for carbon and nitrogen losses- Gas emissions during storage of solid pig manure in China
SHAN Nan, LI Hu, LI Jian-zheng, Ee Ling Ng, MA Yan, WANG Li-gang, CHEN Qing
2019, 18 (1): 190-200.   DOI: 10.1016/S2095-3119(17)61902-6
Abstract341)      PDF (1246KB)(334)      
This study investigated the carbon (C) and nitrogen (N) gas emissions (N2O, NH3, CO2 and CH4) from solid pig manure management in China.  Gas emissions were quantified from static piles over 60 days during summer in China’s Yangtze River Basin, using Drager-Tube and static chamber-gas chromatography techniques.  High emissions of NH3 and N2O were observed at the early stage of storage, but high emission of CH4 occured later during storage.  Overall, 62% of the total C in the original pile was lost; CO2 and CH4 emissions accounted for 57 and 0.2% of C lost respectively.  Over the same time, 41% of the total N in the original pile was lost; NH3 and N2O emissions accounted for 15 and 0.3% of N lost respectively.  The volatilization of NH3 during storage in summer was 4.56 g NH3 per kg dry weight.  The total greenhouse gas (GHG) emissions during storage accounted for 67.93 g CO2 equivalent per kg dry weight; N2O and CH4 contributed to 46 and 55% of total GHG emissions respectively.  Given China’s major role in pig production, further attention should given to pig manure management to mitigate its contribution to atmospheric pollution.
 
Reference | Related Articles | Metrics
Determinants of cooperative pig farmers' safe production behaviour in China – Evidences from perspective of cooperatives' services
JI Chen, CHEN Qin, Jacques Trienekens, WANG Hai-tao
2018, 17 (10): 2345-2355.   DOI: 10.1016/S2095-3119(18)62058-1
Abstract346)      PDF in ScienceDirect      
Farmers’ production behaviour is a key to ensuring the safety and quality of their final products, and cooperatives play an important role in shaping that behaviour.  This paper aims to explore the determinants of pig farmers' safe production behaviour, giving special focus from the perspective of cooperatives’ services.  This study adopted cross sectional survey data from 27 pig cooperatives and their 540 farmers in China to test the influence of cooperatives’ services on farmers’ safe production behaviour.  The hypotheses were tested using a logit regression model.  The findings indicated that although the number of services is not a key determinant of farmers’ safe production behaviour, service quality matters.  When a cooperative is strongly capable of involving more farmers in certain services, and provides certain services in more frequency, member farmers behave more safely.  The results also show that veterinarian and pig-selling services play an important role in ensuring farmers’ safe production behaviour.  For this study, the quality of cooperatives’ services is implied to have a positive impact on farmers’ safe production behaviour.  Leaders/managers of cooperatives must try to improve the quality of their services instead of merely attempting to provide a large number of services.  For government officials and policy makers, designing policies that encourage cooperatives to improve their service quality is important.  This research contributes to the scant literature on how cooperative services could help farmers engage in safer production behaviour, which would improve the safety of pork products in the future.
Reference | Related Articles | Metrics
Overexpression of GmBIN2, a soybean glycogen synthase kinase 3 gene, enhances tolerance to salt and drought in transgenic Arabidopsis and soybean hairy roots
WANG Ling-shuang, CHEN Qing-shan, XIN Da-wei, QI Zhao-ming, ZHANG Chao, LI Si-nan, JIN Yang-mei, LI Mo, MEI Hong-yao, SU An-yu, WU Xiao-xia
2018, 17 (09): 1959-1971.   DOI: 10.1016/S2095-3119(17)61863-X
Abstract530)      PDF in ScienceDirect      
Glycogen synthase kinase 3 (GSK3) is a kind of serine/threonine kinase widely found in eukaryotes.  Many plant GSK3 kinases play important roles in regulating stress responses.  This study investigated BRASSINOSTEROID-INSENSITIVE 2 (GmBIN2) gene, a member of the GSK3 protein kinase family in soybean and an orthologue of Arabidopsis BIN2/AtSK21GmBIN2 expression was increased by salt and drought stresses, but was not significantly affected by the ABA treatment.  To examine the function of GmBIN2, transgenic Arabidopsis and transgenic soybean hairy roots were generated.  Overexpression of GmBIN2 in Arabidopsis resulted in increased germination rate and root length compared with wild-type plants under salt and mannitol treatments.  Overexpression of GmBIN2 increased cellular Ca2+ content and reduced Na+ content, enhancing salt tolerance in transgenic Arabidopsis plants.  In the soybean hairy root assay, overexpression of GmBIN2 in transgenic roots also showed significantly higher relative root growth rate than the control when subjected to salt and mannitol treatments.  Measurement of physiological indicators, including proline content, superoxide dismutase (SOD) activity, and relative electrical conductivity, supported this conclusion.  Furthermore, we also found that GmBIN2 could up-regulate the expression of some stress-related genes in transgenic Arabidopsis and soybean hairy roots.  Overall, these results indicated that GmBIN2 improved tolerance to salt and drought in transgenic Arabidopsis and soybean hairy roots.
 
Reference | Related Articles | Metrics
Identification of novel soybean oil content-related genes using QTLbased collinearity analysis from the collective soybean genome
XU Ming-yue, LIU Zhang-xiong, QIN Hong-tao, QI Hui-dong, WANG Zhong-yu, MAO Xin-rui, XIN Dawei, HU Zhen-bang, WU Xiao-xia, JIANG Hong-wei, QI Zhao-ming, CHEN Qing-shan
2018, 17 (08): 1727-1735.   DOI: 10.1016/S2095-3119(17)61862-8
Abstract413)      PDF in ScienceDirect      
Soybean is a global principal source of edible plant oil.  As more soybean oil-related quantitative trait loci (QTLs) have been located in the collective genome, it is urgent to establish a classification system for these distributed QTLs.  A collinear platform may be useful to characterize and identify relationships among QTLs as well as aid in novel gene discovery.  In this study, the collinearity MCScanX algorithm and collective soybean genomic information were used to construct collinearity blocks, to which soybean oil-related QTLs were mapped.  The results demonstrated that 666 collinearity blocks were detected in the soybean genome across 20 chromosomes, and 521 collinearity relationships existed in 231 of the 242 effective soybean oil-related QTLs.  This included 214 inclusion relationships and 307 intersecting relationships.  Among them, the collinearity among QTLs that are related to soybean oil content was shown on a maximum of seven chromosomes and minimum of one chromosome, with the majority of QTLs having collinearity on two chromosomes.  Using overlapping hotspot regions in the soybean oil QTLs with collinearity, we mined for novel oil content-related genes.  Overall, we identified 23 putatively functional genes associated with oil content in soybean and annotated them using a number of annotation databases.  Our findings provide a valuable framework for elucidating evolutionary relationships between soybean oil-related QTLs and lay a foundation for functional marker-assisted breeding relating to soybean oil content.
Reference | Related Articles | Metrics
GmDRR1, a dirigent protein resistant to Phytophthora sojae in Glycine max (L.) Merr.
CHEN Qing-shan, YU Guo-long, ZOU Jia-nan, WANG Jing, QIU Hong-mei, ZHU Rong-sheng, CHANG Hui-lin, JIANG Hong-wei, HU Zhen-bang, LI Chang-yu, ZHANG Yan-jiao, WANG Jin-hui, WANG Xueding, GAO Shan...
2018, 17 (06): 1289-1298.   DOI: 10.1016/S2095-3119(17)61821-5
Abstract553)      PDF in ScienceDirect      
Soil-borne pathogen Phytophthora sojae is an oomycete that causes devastating damage to soybean yield.  To mine original resistant genes in soybean is an effective and environmentally-friend approach controlling the disease.  In this study, soybean proteins were extracted from the first trifoliolates infected by predominant P. sojae race 1 and analyzed by two-dimensional gel electrophoresis.  Nineteen differently-expressed protein spots were detected, and 10 of them were further applied for Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry Assay.  One protein containing a dirigent (DIR) domain was identified and belonged to the DIR-b/d family.  Therefore, it was named as GmDRR1 (Glycine max Disease Resistance Response 1).  Then, GmDRR1 gene was pathologically confirmed to be involved in the resistant to P. sojae in soybean.  GmDRR1-GFP (green fluorescent protein) fusion proteins localized in the cell membrane.  qRT-PCR results showed GmDRR1 gene expressed differently in P. sojae resistant- and susceptible-soybean cultivars.  By the promoter analysis, we found a haplotype H8 was existing in most resistant soybean varieties, while a haplotype H77 was existing in most susceptible soybean varieties.  The H77 haplotype had seven SNPs (C to A, G to C, C to A, T to A, T to C, T to C, and T to A) and two single nucleotide insertions.  The results supported that the expression difference of GmDRR1 genes between P. sojae resistant- and susceptible-soybean cultivars might depend on the GmDRR1 promoter SNPs.  The results suggested that GmDRR1 was a dirigent protein involved in soybean resistant to P. sojae and paved a novel way for investigation of the molecular regulatory mechanism of the defense response to P. sojae in soybean.
Related Articles | Metrics
Meta-analysis of soybean amino acid QTLs and candidate gene mining
GONG Qian-chun, YU Hong-xiao, MAO Xin-rui, QI Hui-dong, SHI Yan, XIANG Wei, CHEN Qing-shan,
2018, 17 (05): 1074-1084.   DOI: 10.1016/S2095-3119(17)61783-0
Abstract471)      PDF in ScienceDirect      
The composition and quantity of amino acids influence the protein content and nutritional value of soybeans and also have an important impact upon soybean quality.  After integrating and proofreading 140 original QTLs associated with amino acid contentfrom soybase (http://www.soybase.org/), 138 QTLs were further analyzed to determine high-confidence QTL regions.  Meta-analysis was first carried out using the BioMercator ver. 2.1 software, yielding 33 consensus QTLs.  The consensus QTL confidence intervals (CIs) ranged from 0.07 to 19.85 Mb.  Next, the overview method was used to optimize the CIs, and 57 “real” QTLs were mapped.  Candidate genes in the consensus QTL regions were obtained from Phytozome and were annotated using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Swissprot, and gene annotation databases.  Finally, 16 unpublished candidate genes controlling the content of five types of amino acids were identified with Blast.  These results laid the foundation for fine mapping of soybean amino acid-related QTLs and marker-assisted selection.
Reference | Related Articles | Metrics
A callus transformation system for gene functional studies in soybean
XU Kun, ZHANG Xiao-mei, FAN Cheng-ming, CHEN Fu-lu, ZHU Jin-long, ZHANG Shi-long, CHEN Qing-shan, FU Yong-fu
2017, 16 (09): 1913-1922.   DOI: 10.1016/S2095-3119(16)61621-0
Abstract748)      PDF in ScienceDirect      
    Obtaining transgenic plants is a common method for analyzing gene function. Unfortunately, stable genetic transformation is difficult to achieve, especially for plants (e.g., soybean), which are recalcitrant to genetic transformation. Transient expression systems, such as Arabidopsis protoplast, Nicotiana leaves, and onion bulb leaves are widely used for gene functional studies. A simple method for obtaining transgenic soybean callus tissues was reported recently. We extend this system with simplified culture conditions to gene functional studies, including promoter analysis, expression and subcellular localization of the target protein, and protein-protein interaction. We also evaluate the plasticity of this system with soybean varieties, different vector constructs, and various Agrobacterium strains. The results indicated that the callus transformation system is efficient and adaptable for gene functional investigation in soybean genotype-, vector-, and Agrobacterium strain-independent modes. We demonstrated an easy set-up and practical homologous strategy for soybean gene functional studies.
Reference | Related Articles | Metrics
Blue light is more essential than red light for maintaining the activities of photosystem II and I and photosynthetic electron transport capacity in cucumber leaves
MIAO Yan-xiu, WANG Xiao-zhuo, GAO Li-hong, CHEN Qing-yun, QU Mei
2016, 15 (1): 87-100.   DOI: 10.1016/S2095-3119(15)61202-3
Abstract2017)      PDF in ScienceDirect      
Blue and red lights differently regulate leaf photosynthesis. Previous studies indicated that plants under blue light generally exhibit better photosynthetic characteristics than those under red light. However, the regulation mechanism of related photosynthesis characteristics remains largely unclear. Here, four light qualities treatments (300 μmol m–2 s–1) including white fluorescent light (FL), blue monochromatic light (B, 440 nm), red monochromatic light (R, 660 nm), and a combination of red and blue light (RB, R:B=8:1) were carried out to investigate their effects on the activity of photosystem II (PSII) and photosystem I (PSI), and photosynthetic electron transport capacity in the leaves of cucumber (Cucumis sativus L.) seedlings. The results showed that compared to the FL treatment, the R treatment significantly limited electron transport rate in PSII (ETRII) and in PSI (ETRI) by 79.4 and 66.3%, respectively, increased non-light induced non-photochemical quenching in PSII (ΦNO) and limitation of donor side in PSI (ΦND) and reduced most JIP-test parameters, suggesting that the R treatment induced suboptimal activity of photosystems and inhibited electron transport from PSII donor side up to PSI. However, these suppressions were effectively alleviated by blue light addition (RB). Compared with the R treatment, the RB treatment significantly increased ETRII and ETRI by 176.9 and 127.0%, respectively, promoted photosystems activity and enhanced linear electron transport by elevating electron transport from QA to PSI. The B treatment plants exhibited normal photosystems activity and photosynthetic electron transport capacity similar to that of the FL treatment. It was concluded that blue light is more essential than red light for normal photosynthesis by mediating photosystems activity and photosynthetic electron transport capacity.
Reference | Related Articles | Metrics
Soil carbon sequestration under long-term rice-based cropping systems of purple soil in Southwest China
FAN Hong-zhu, CHEN Qing-rui, QIN Yu-sheng, CHEN Kun, TU Shi-hua, XU Ming-gang, ZHANG Wen-ju
2015, 14 (12): 2417-2425.   DOI: 10.1016/S2095-3119(15)61225-4
Abstract1209)      PDF in ScienceDirect      
Carbon sequestration in agricultural soils is a complex process controlled by farming practices, climate and some other environment factors. Since purple soils are unique in China and used as the main cropland in Sichuan Basin of China, it is of great importance to study and understand the impacts of different fertilizer amendments on soil organic carbon (SOC) changes with time. A research was carried out to investigate the relationship between soil carbon sequestration and organic carbon input as affected by different fertilizer treatments at two long-term rice-based cropping system experiments set up in early 1980s. Each experiment consisted of six identical treatments, including (1) no fertilizer (CK), (2) nitrogen and phosphorus fertilizers (NP), (3) nitrogen, phosphorus and potassium fertilizers (NPK), (4) fresh pig manure (M), (5) nitrogen and phosphorus fertilizers plus manure (MNP), and (6) nitrogen, phosphorus and potassium fertilizers plus manure (MNPK). The results showed that annual harvestable carbon biomass was the highest in the treatment of MNPK, followed by MNP and NPK, then M and NP, and the lowest in CK. Most of fertilizer treatments resulted in a significant gain in SOC ranging from 6.48 to 29.13% compared with the CK, and raised soil carbon sequestration rate to 0.10–0.53 t ha–1 yr−1. Especially, addition of manure on the basis of mineral fertilizers was very conducive to SOC maintenance in this soil. SOC content and soil carbon sequestration rate under balanced fertilizer treatments (NPK and MNPK) in the calcareous purple soil (Suining) were higher than that in the acid purple soil (Leshan). But carbon conversion rate at Leshan was 11.00%, almost 1.5 times of that (7.80%) at Suining. Significant linear correlations between soil carbon sequestration and carbon input were observed at both sites, signifying that the purple soil was not carbon-saturated and still had considerable potential to sequestrate more carbon.
Reference | Related Articles | Metrics
Identification of a Group of Novel γ-Gliadin Genes
QI Peng-fei, WEI Yu-ming, Ouellet Thérèse, CHEN Qing, WANG Zhao, WEI Zhen-zhen , ZHENG You-liang
2014, 13 (2): 290-298.   DOI: 10.1016/S2095-3119(13)60358-5
Abstract1690)      PDF in ScienceDirect      
γ-Gliadins are an important component of wheat seed storage proteins. Four novel γ-gliadin genes (Gli-ng1 to Gli-ng4) were cloned from wheat (Triticum aestivum) and Aegilops species. The novel γ-gliadins were much smaller in molecular size when compared to the typical γ-gliadins, which was caused by deletion of the non-repetitive domain, glutamine-rich region, 3´ part of the repetitive domain, and 5´ part of the C-terminal, possibly due to illegitimate recombination between the repetitive domain and the C-terminal. As a result, Gli-ng1 and Gli-ng4 only contained two and three cysteine residues, respectively. Gli-ng1, as the representative of novel γ-gliadin genes, has been sub-cloned into an Escherichia coli expression system. SDS- PAGE indicated that the both cysteine residues of Gli-ng1 could participate in the formation of intermolecular disulphide bonds in vitro. Successful cloning of Gli-ng1 from seed cDNA of T. aestivum cv. Chinese Spring suggested that these novel γ-gliadin genes were normally transcribed during the development of seeds. Phylogenic analysis indicated that the four novel γ-gliadin genes had a closer relationship with those from the B (S) genome of wheat.
Reference | Related Articles | Metrics
MicroRNAs Involved in the Pathogenesis of Phytophthora Root Rot of Soybean (Glycine max)
WANG Jing*, LIU Chun-yan*, ZHANG Li-wei, WANG Jia-lin, HU Guo-hua, DING Jun-jie , CHEN Qing-shan
2011, 10 (8): 1159-1167.   DOI: 10.1016/S1671-2927(11)60106-5
Abstract3391)      PDF in ScienceDirect      
Phytophthora root rot is one of the most prevalent diseases in the world, which can infect the seedlings and plants, withsubstantial negative impact on soybean yield and quality. MicroRNAs (miRNAs) are a class of post-transcriptionalregulators of gene expression during growth and development of organisms. A soybean disease-resistance varietySuinong 10 was inoculated with Phytophthora sojae race No. 1, and the specific miRNA resistant expression profile wasacquired by microarray for the first time. Different expressional miRNAs have been found after comparing the results ofthe treated sample with the control sample. Furthermore, the target genes of different expressional miRNAs were predicted.Two miRNAs, cbr-mir-241 and ath-miR854a, regulated the disease-resistance process directly through their targets, someenzymes. Another two miRNAs, gma-miR169a and ath-miR169h, participated in disease-resistance regulation as transcriptionfactors. Similarly, one miRNA, ptc-miR164f, has been reported to regulate the plant development. All of these studieswould be served as the foundation for exploring the resistance mechanism.
Reference | Related Articles | Metrics
An Integrated Quantitative Trait Locus Map of Oil Content in Soybean, Glycine max (L.) Merr., Generated Using a Meta-Analysis Method for Mining Genes 
QI Zhao-ming, HAN Xue, SUN Ya-nan, WU Qiong, SHAN Da-peng, DU Xiang-yu, LIU Chun-yan, JIANG Hong-wei, HU Guo-hua , CHEN Qing-shan
2011, 10 (11): 1681-1692.   DOI: 10.1016/S1671-2927(11)60166-1
Abstract2365)      PDF in ScienceDirect      
Soybean is a major cash crop in the world, and its oil content was one of the very important traits. Therefore, the study of gene mapping for oil content in soybean is very important for breeding application. At present, at least 130 QTL loci for soybean oil content have been published; however, the mapping results of oil content were dispersed and a coalescent public map should be established to integrate the published QTLs, and to more efficiently mine genes based on the metaanalysis method of the bioinformatics tools. This study was to construct an integrated map of QTLs for soybean oil content and accelerate the application of bioinformation resource related to oil content improvement in the practice of soybean breeding. We collected information of 130 QTLs reported over the past 20 yr for soybean oil content and used the Software BioMercator 2.1 to project QTLs from their own maps onto a reference map, which was an early-integrated map constructed by Song (2004) for oil-content quantitative trait loci (QTLs) in soybean. Gene mining was performed based on the meta-analysis by running the local ver. GENSCAN and InterProScan. The confidence interval of QTLs was efficaciously narrowed using the meta-analysis method, and 25 consensus QTLs were mapped on the reference map. Using a local version of GENSCAN, 12 805 sequences in the consensus QTL intervals were predicted. With BLAST, these predicted sequences were aligned to gene sequences from the International Protein Index database using InterProScan locally. Thirteen predicted genes were in the class of the geme ontology (GO) accession (0006631), which were involved in the fatty acid metabolic process. These genes were analyzed using BLAST at the NCBI website to examine whether they were related to oil content. Six genes were found in the oil-synthesis pathway. Twenty-five consensus QTLs and six genes were found in the oil-synthesis pathway. These results would lay the foundation for marker-assisted selection and mapping QTL precisely, and these genes will facilitate the researches on the gene mining of oil synthesis and molecular breeding in soybean.
Reference | Related Articles | Metrics