Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Effect of Bt traits on transgenic rice’s growth and weed competitiveness
WANG Kang-xu , ZHANG Ke-rou, CAO Cou-gui, JIANG Yang
2023, 22 (8): 2346-2358.   DOI: 10.1016/j.jia.2023.01.001
Abstract171)      PDF in ScienceDirect      
Transgene escape could lead to genetically modified rice establishing wild populations in the natural environment and competing for survival space with weeds.  However, whether the expression of the Bacillus thuringiensis (Bt) gene in rice will alter the relationship between transgene plants and weeds and induce undesirable environmental consequences are poorly understood.  Thus, field experiments were conducted to investigate the weed competitiveness and assess the ecological risk of transgenic Bt rice under herbicide-free and lepidopterous pest-controlled environments.  Results showed that weed–rice competition in the direct-sowing (DS) field was earlier and more severe than that in the transplanting (TP) field, which resulted in a significant decrease in biomass and yield in DS.  However, conventional Bt and non-Bt rice yield was not significantly different.  The weed number, weed coverage ratio, and weed diversity of conventional Bt rice were significantly higher than those of non-Bt rice at the early growth and mature stages, especially in DS plots, suggesting that Bt traits did not increase the weed competitiveness of transgenic rice and had no negative effect on weed diversity.  Grain yield and weed number varied between different hybrid rice lines, but those differences were insignificant between Bt and non-Bt rice.  The number of insects increased with the increase of weeds in hybrid rice plots, whereas the insect number and diversity did not display a significant difference between Bt and non-Bt rice.  Therefore, the ecological risk of transgenic Bt rice is comparable to non-Bt rice.
Reference | Related Articles | Metrics
Untargeted UHPLC–Q-Exactive-MS-based metabolomics reveals associations between pre- and post-cooked metabolites and the taste quality of geographical indication rice and regular rice
SHI Shi-jie, ZHANG Gao-yu, CAO Cou-gui, JIANG Yang
2023, 22 (7): 2271-2281.   DOI: 10.1016/j.jia.2023.06.003
Abstract180)      PDF in ScienceDirect      
Geographical indication (GI) rice refers to the rice of specific geographical origin, which tends to have a good taste quality and a high commodity price.  Rice is favored for its soft texture and chewiness after cooking.  However, GI rice is also plagued by rice fraud.  Understanding the reasons for the excellent taste quality of GI rice and identifying its geographical origin can help maintain the stability of the rice market and promote the development of the rice industry.  In this study, we determined the taste quality of rice.  Untargeted metabolomics based on UHPLC–Q-Exactive-MS was used to identify metabolites in GI and regular rice before and after cooking.  Our findings suggested that GI rice showed lower protein and amylose content, resulting in higher starch gelatinization properties and taste quality.  This study identified 520 metabolites, among which 142 and 175 were significantly different between GI and regular rice, before and after cooking, respectively.  The increased variety of metabolites after cooking was significantly negatively correlated with the taste quality of rice.  GI rice was lower in amino acids and lipid metabolite content before and after cooking, which may be the reason for the excellent taste quality.  Through linear discriminant analysis, we found that the differential metabolites of rice after cooking were more accurate in discriminating rice from different geographic origins, up to 100%.  This work gained new insights into the metabolites of GI rice, which explains its excellent taste quality.  The rice metabolites after cooking could be used for more accurate geographical identification of rice.
Reference | Related Articles | Metrics
Sustainability of the rice–crayfish farming model in waterlogged land: A case study in Qianjiang County, Hubei Province, China
YUAN Peng-li, WANG Jin-ping, GUO Can, GUO Zi-yuan, GUO Yao, CAO Cou-gui
2022, 21 (4): 1203-1214.   DOI: 10.1016/S2095-3119(21)63787-5
Abstract145)      PDF in ScienceDirect      
The rice–crayfish farming model has been rapidly developed and become an economically viable method to supply food in China in recent years.  However, its environmental and economic sustainability has not been thoroughly investigated.  This study uses a survey in 2016 and a field experiment in 2017 in Qianjiang, Hubei Province, China to assess the relative economics of concurrent rice–wheat (RW), rice–crayfish (RC), and crayfish monoculture (CM) models in waterlogged land areas.  The field survey indicated that the RC model had a higher benefit–cost ratio (3.5:1) than the RW (2.0:1) and CM (3.1:1) models and the RC model protected farmers’ enthusiasm for grain production facing unfavourable weather conditions.  The field experiment aimed to explore nitrogen management strategies in RC fields.  In the experiment, four levels of nitrogen concentration gradient - 0 kg N ha–1 (0 N), 75 kg N ha–1 (75 N), 150 kg N ha–1 (150 N) and 225 kg N ha–1 (225 N), were set in a 2-year-old rice–crayfish (RC2) field, an 8-year-old rice–crayfish (RC8) field, and a RW field as a control.  The field experiment results suggested that the peak  rice yield in RW, RC2, and RC8 occurred when 225 N, 150 N and 75 N were used, respectively.  In RC2 and RC8, however, residual feed-nitrogen that was not used by crayfish was utilized by rice plants.  Thus, an optimal amount of nitrogen in RC fields was proposed to improve the nitrogen use efficiency and reduce environmental pollution by nitrogen fertilizer.  Farmers use less nitrogen but have higher net income in RC than in RW and CM.  It is necessary to sustainably develop integrated farming technologies (i.e., proper field configurations for rice fields) to effectively sustain rice production.  The results also showed that the RC farming model was a viable diversification option for rice farmers in waterlogged land.  
Reference | Related Articles | Metrics
Effect of various combinations of temperature during different phenolgical stages on indica rice yield and quality in Yangtze River Basin in China
TU De-bao JIANG Yang, ZHANG Li-juan, CAI Ming-li, LI Cheng-fang, CAO Cou-gui
2022, 21 (10): 2900-2909.   DOI: 10.1016/j.jia.2022.07.056
Abstract201)      PDF in ScienceDirect      
Rice grain yield and quality declines are due to unsuitable temperatures from wide regions and various sowing dates.  This study aimed to evaluate the effects of temperature on rice yield and quality at different phenological periods and obtain suitable temperatures for phenological periods in the Yangtze River Basin, China.  This study conducted experiments on different sowing dates under different areas in the Yangtze River Basin to observe and compare the differences in rice growth, yield, and quality, controlling for regional varieties.  The results showed significant differences in rice growth, yield, and quality among sowing dates and areas, which were related to the average daily temperature during the vegetative period (VT) and the first 20 days of the grain-filling period (GT20).  In addition, there was a smaller variation in the average daily temperature in the reproductive period (RT) than in the two phenological periods.  Therefore, according to the VT and GT20 thresholds of different yields and qualities, the experimental results were divided into four scenarios (I, II, III, and IV) in this study.  In Scenario I, high head rice production (rice grain yield multiplied by head rice rate) and rice quality could be obtained.  The head rice production of Scenarios III and IV was lower than that of Scenario I, by 30.1 and 27.6%, respectively.  In Scenario II, the head rice production increased insignificantly while the chalky grain rate and chalkiness were 50.6 and 56.3% higher than those of Scenario I.  In conclusion, the Scenario I combination with VT ranges of 22.8–23.9°C and GT20 ranges of 24.2–27.0°C or the combination with VT ranges of 23.9–25.3°C and GT20 ranges of 24.2–24.9°C, which can be obtained by adjusting sowing date and selecting rice varieties with suitable growth periods, is recommended to achieve high levels of rice grain yield and quality in the Yangtze River Basin. 
Reference | Related Articles | Metrics
Innovation of the double-maize cropping system based on cultivar growing degree days for adapting to changing weather conditions in the North China Plain
WANG Dan, LI Guo-rui, ZHOU Bao-yuan, ZHAN Ming, CAO Cou-gui, MENG Qing-feng, XIA Fei, MA Wei, ZHAO Ming
2020, 19 (12): 2997-3012.   DOI: 10.1016/S2095-3119(20)63213-0
Abstract112)      PDF in ScienceDirect      
Double-maize cropping system is an effective option for coping with climate change in the North China Plain.  However, the effects of changes in climate on the growth and yield of maize in the two seasons are poorly understood.  Forty-six cultivars of maize with different requirements for growing degree days (GDD), categorized as high (H), medium (M) or low (L), and three cultivar combinations for two seasons as LH (using JD27 and DMY1 from category L in the first season; and YD629 and XD22 from category H in the second season), MM (using JX1 and LC3 from category M in the first season; and ZD958 and JX1 from category M in the second season) and HL (using CD30 and QY9 from category H in the first season; and XK10 and DMY3 from category L in the second season) were tested to examine the eco-physiological determinants of maize yield from 2015 to 2017.  The correlations between the combinations of cultivars and grain yield were examined.  The combination LH produced the highest annual grain yield and total biomass, regardless of the year.  It was followed, in decreasing order, by MM and HL.  Higher grain yield and biomass in LH were mainly due to the greater grain yield and biomass in the second season, which were influenced mainly by the lengths of the pre- and post-silking periods and the rate of plant growth (PGR).  Temperature was the primary factor that influenced dry matter accumulation.  In the first season, low temperatures during pre-silking decreased both the duration and PGR in LH, whereas high temperatures during post-silking decreased the PGR in MM and HL, resulting in no significant differences in biomass being observed among the three combinations.  In the second season, high temperatures decreased both the PGR and pre- and post-silking duration in MM and HL, and consequently, the biomass of those two combinations were lower than that in LH.  Moreover, because of lower GDD and radiation in the first season and higher grain yield in the second season, production efficiency of temperature and radiation (Ra) was the highest in LH.  More importantly, differences in temperature and radiation in the two seasons significantly affected the rate and duration of growth in maize, and thereby affecting both dry matter and grain yield.  Our study indicated that the combination of LH is the best for optimizing the double-maize system under changing climatic conditions in the North China Plain.
Reference | Related Articles | Metrics
Effects of N Management on Yield and N Uptake of Rice in Central China
PANSheng-gang , HUANG Sheng-qi, ZHAI Jing, WANG Jing-ping, CAO Cou-gui, CAI Ming-li, ZHAN Ming , TANG Xiang-ru
2012, 12 (12): 1993-2000.   DOI: 10.1016/S1671-2927(00)8736
Abstract1405)      PDF in ScienceDirect      
Efficient N fertilizer management is critical for the economic production of rice and the long-term protection of environmental quality. A field experiment was designed to study the effects of N fertilizer management practices on grain yield and N uptake of rice. The experiment was laid out in the randomized complete block design with four replications in Central China during 2008 and 2009. Five N treatments denoted as N0, N150A, N150B, N240A, and N240B, respectively, were studied. N0 represented no N application and served as a control, N150A and N150B indicated the total N application of 150 kg N ha-1 but with two different application schedules (A and B) across the early stage of rice growth. Schedule A was applied as follows: 40% basal, 30% at 10 d after transplanting (DAT) and 30% at 36 DAT (nearly at the panicle initiation stage), while schedule B was as follows: 30% at basal, 20% at 10 DAT, and 50% at 36 DAT. Similarly, N240A and N240B indicated the total N application of 240 kg N ha-1 with schedules A and B as described above. To quantify N uptake from fertilizer and soil, a 15N experiment was also conducted within the main experimental field, with micro-plots. Grain yields were significantly increased as N rates increased from 0 to 240 kg N ha-1. At the same rate, splitting N application as schedule B significantly increased the grain yield, spikelets per panicle, percentage of ripened grain, and 1 000-grain weight, compared with the N application according to schedule A. Mean rice recovery of N fertilizer by 15N tracing method ranged from 25.39% at N240A to 34.89% at N150B, however, N fertilizer residual rate in the soil ranged from 12.40% at N240A to 16.61% at N150B. About 31.5 and 28.5% of total uptake of 15N derived from basal fertilizer was absorbed at panicle initiation and heading stages, respectively. However, 65.6-92.5% of total uptake of 15N derived from topdressing fertilizer was absorbed at the heading stage. Based on yield and nitrogen recovery efficiency, splitting N application according to schedule B at the rate of 240 kg N ha-1 will be more profitable among the tested five N treatments in Central China.
Reference | Related Articles | Metrics