Please wait a minute...
Journal of Integrative Agriculture  2015, Vol. 14 Issue (4): 603-609    DOI: 10.1016/S2095-3119(14)60774-7
Crop Genetics · Breeding · Germplasm Resources Advanced Online Publication | Current Issue | Archive | Adv Search |
Comparative genetic mapping revealed powdery mildew resistance gene MlWE4 derived from wild emmer is located in same genomic region of Pm36 and Ml3D232 on chromosome 5BL
 ZHANG Dong, OUYANG Shu-hong, WANG Li-li, CUI Yu, WU Qiu-hong, LIANG Yong, WANG Zhen-zhong, XIE Jing-zhong, ZHANG De-yun, WANG Yong, CHEN Yong-xing, LIU Zhi-yong
State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most devastating wheat diseases. Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is a promising source of disease resistance for wheat. A powdery mildew resistance gene conferring resistance to B. graminis f. sp. tritici isolate E09, originating from wild emmer wheat, has been transferred into the hexaploid wheat line WE4 through crossing and backcrossing. Genetic analyses indicated that the powdery mildew resistance was controlled by a single dominant gene, temporarily designated MlWE4. By mean of comparative genomics and bulked segregant analysis, a genetic linkage map of MlWE4 was constructed, and MlWE4 was mapped on the distal region of chromosome arm 5BL. Comparative genetic linkage maps showed that genes MlWE4, Pm36 and Ml3D232 were co-segregated with markers XBD37670 and XBD37680, indicating they are likely the same gene or alleles in the same locus. The co-segregated markers provide a starting point for chromosome landing and map-based cloning of MlWE4, Pm36 and Ml3D232.

Abstract  Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most devastating wheat diseases. Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is a promising source of disease resistance for wheat. A powdery mildew resistance gene conferring resistance to B. graminis f. sp. tritici isolate E09, originating from wild emmer wheat, has been transferred into the hexaploid wheat line WE4 through crossing and backcrossing. Genetic analyses indicated that the powdery mildew resistance was controlled by a single dominant gene, temporarily designated MlWE4. By mean of comparative genomics and bulked segregant analysis, a genetic linkage map of MlWE4 was constructed, and MlWE4 was mapped on the distal region of chromosome arm 5BL. Comparative genetic linkage maps showed that genes MlWE4, Pm36 and Ml3D232 were co-segregated with markers XBD37670 and XBD37680, indicating they are likely the same gene or alleles in the same locus. The co-segregated markers provide a starting point for chromosome landing and map-based cloning of MlWE4, Pm36 and Ml3D232.
Keywords:  wild emmer       powdery mildew resistance gene       Pm36       comparative genomics  
Received: 26 February 2014   Accepted:
Fund: 

This work was financially supported by the National High- Tech R&D Program of China (2011AA100104), the National Basic Research Program of China (2013CB127705), the National Natural Science Foundation of China (31030056, 31210103902), and the Introducing Talents of Disciplines to Universities, Ministry of Education (MOE) of China (111-02-3).

Corresponding Authors:  LIU Zhi-yong, Tel: +86-10-62731211,E-mail: zhiyongliu@cau.edu.cn     E-mail:  zhiyongliu@cau.edu.cn

Cite this article: 

ZHANG Dong, OUYANG Shu-hong, WANG Li-li, CUI Yu, WU Qiu-hong, LIANG Yong, WANG Zhen-zhong, XIE Jing-zhong, ZHANG De-yun, WANG Yong, CHEN Yong-xing, LIU Zhi-yong. 2015. Comparative genetic mapping revealed powdery mildew resistance gene MlWE4 derived from wild emmer is located in same genomic region of Pm36 and Ml3D232 on chromosome 5BL. Journal of Integrative Agriculture, 14(4): 603-609.

Allen G C, Flores-Vergara M A, Krasynanski S, Kumar S. 2006.A modified protocol for rapid DNA isolation from planttissues using cetyltrimethylammonium bromide. NatureProtocols, 1, 2320-2325

Ben-David R, Xie W, Peleg Z, Saranga Y, Dinoor A, FahimaT. 2010. Identification and mapping of PmG16, a powderymildew resistance gene derived from wild emmer wheat.Theoretical and Applied Genetics, 121, 499-510

Blanco A, Gadaleta A, Cenci A, Carluccio A V, Abdelbacki A M,Simeone R. 2008. Molecular mapping of the novel powderymildew resistance gene Pm36 introgressed from Triticumturgidum var. dicoccoides in durum wheat. Theoretical andApplied Genetics, 117, 135-142

Brenchley R, Spannagl M, Pfeifer M, Barker G L, D’Amore R,Allen A M, McKenzie N, Kramer M, Kerhornou A, BolserD, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, LuoM C, Sehgal S, Gill B, Kianian S, et al. 2012. Analysis ofthe bread wheat genome using whole-genome shotgunsequencing. Nature, 491, 705-710

Devos K M, Gale M D. 1997. Comparative genetics in thegrasses. Plant Molecular Biology Reporter, 35, 3-15

Faricelli M E, Valarik M, Dubcovsky J. 2010. Control of floweringtime and spike development in cereals: the earliness per seEps-1 region in wheat, rice, and Brachypodium. Functional& Integrative Genomics, 10, 293-306

Faris J D, Zhang Z C, Lu H J, Lu S, Reddy L, Cloutier S, FellersJ P, Meinhardt S W, Rasmussen J B, Xu S S, Oliver R P,Simons K J, Friesen T L. 2010. A unique wheat diseaseresistance-like gene governs effector-triggered susceptibilityto necrotrophic pathogens. Proceedings of the NationalAcademy of Sciences of the United States of America,107, 13544-13549

Hua W, Liu Z J, Zhu J, Xie C J, Yang T M, Zhou Y L, DuanX Y, Sun Q X, Liu Z Y. 2009. Identification and geneticmapping of pm42, a new recessive wheat powdery mildewresistance gene derived from wild emmer (Triticum turgidumvar. dicoccoides). Theoretical and Applied Genetics, 119,223-230

International Brachypodium Initiative. 2010. Genomesequencing and analysis of the model grass Brachypodiumdistachyon. Nature, 463, 763-768

International Rice Genome Sequencing Project. 2005. The mapbasedsequence of the rice genome. Nature, 436, 793-800

Ji X L, Xie C J, Ni Z F, Yang T M, Nevo E, Fahima T, Liu ZY, Sun Q X. 2008. Identification and genetic mapping of apowdery mildew resistance gene in wild emmer (Triticumdicoccoides) accession IW72 from Israel. Euphytica, 159,385-390

Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, PfeiferM, Tao Y, Zhang X, Jing R, Zhang C, Ma Y, Gao L, GaoC, Spannagl M, Mayer K F, Li D, Pan S, Zheng F, et al.2013. Aegilops tauschii draft genome sequence reveals agene repertoire for wheat adaptation. Nature, 496, 91-95

Lander E S, Green P, Abrahamson J, Barlow A, Daly M J,Lincoln S E, Newberg L A. 1987. MAPMAKER: an interactivecomputer package for constructing primary genetic linkagemaps of experimental and natural populations. Genomics, 1, 174-181

Li G Q, Fang T L, Zhang H T, Xie C J, Li H, Yang T M, Nevo E,Fahima T, Sun Q X, Liu Z Y. 2009. Molecular identificationof a new powdery mildew resistance gene Pm41 onchromosome 3BL derived from wild emmer (Triticumturgidum var. dicoccoides). Theoretical and AppliedGenetics, 119, 531-539

Ling H Q, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D,Dong L, Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S,Wang B, Yu K, Liang Q, Yang W, et al. 2013. Draft genomeof the wheat A-genome progenitor Triticum urartu. Nature,496, 87-90

Liu Z J, Zhu J, Cui Y, Liang Y, Wu H, Song W, Liu Q, Yang TM, Sun Q X, Liu Z Y. 2012. Identification and comparativemapping of a powdery mildew resistance gene derivedfrom wild emmer (Triticum turgidum var. dicoccoides) onchromosome 2BS. Theoretical and Applied Genetics, 124,1041-1049

Liu Z Y, Sun Q X, Ni Z F, Nevo E, Yang T M. 2002. Molecularcharacterization of a novel powdery mildew resistance genePm30 in wheat originating from wild emmer. Euphytica,123, 21-29

Lu H J, Faris J D. 2006. Macro- and microcolinearity betweenthe genomic region of wheat chromosome 5B containing theTsn1 gene and the rice genome. Functional & IntegrativeGenomics, 6, 90-103

McIntosh R A, Yamazaki Y, Dubcovsky J, Rogers J, MorrisC, Appels R, Xia X C. 2013. Catalogue of gene symbolsfor wheat. In: Proceedings of the 12th International WheatGenetics Symposium. Yokohama, Japan.

Michelmore R W, Paran I, Kesseli R V. 1991. Identificationof markers linked to disease-resistance genes by BulkedSegregant Analysis - A rapid method to detect markers inspecific genomic regions by using segregating populations.Proceedings of the National Academy of Sciences of theUnited States of America, 88, 9828-9832

Mohler V, Zeller F J, Wenzel G, Hsam L K. 2005. Chromosomallocation of genes for resistance to powdery mildew incommon wheat (Triticum aestivum L. em Thell.). 9. GeneMlZec1 from the Triticum dicoccoides-derived wheat lineZecoi-1. Euphytica, 142, 161-167

Paterson A H, Bowers J E, Bruggmann R, Dubchak I, GrimwoodJ, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A,Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, BhartiA K, Chapman J, Feltus F A, Gowik U, Grigoriev I V, et al.2009. The Sorghum bicolor genome and the diversificationof grasses. Nature, 457, 551-556

Reader S M, Miller T E. 1991. The introduction into bread wheatof a major gene for resistance to powdery mildew from wildemmer wheat. Euphytica, 53, 57-60

Rong J K, Millet E, Manisterski J, Feldman M. 2000. A newpowdery mildew resistance gene: Introgression from wildemmer into common wheat and RFLP-based mapping.Euphytica, 115, 121-126

Schnable P S, Ware D, Fulton R S, Stein J C, Wei F, PasternakS, Liang C, Zhang J, Fulton L, Graves T A, Minx P, ReilyA D, Courtney L, Kruchowski S S, Tomlinson C, StrongC, Delehaunty K, Fronick C, Courtney B, Rock S M, et al.2009. The B73 maize genome: complexity, diversity, anddynamics. Science, 326, 1112-1115

Spielmeyer W, Singh R P, McFadden H, Wellings C R, Huerta-Espino J. 2008. Fine scale genetic and physical mappingusing interstitial deletion mutants of Lr34/Yr18: a diseaseresistance locus effective against multiple pathogens inwheat. Theoretical and Applied Genetics, 116, 481-490

Wiebe K, Harris N S, Faris J D, Clarke J M, Knox R E, Taylor GJ, Pozniak C J. 2010. Targeted mapping of Cdu1, a majorlocus regulating grain cadmium concentration in durumwheat (Triticum turgidum L. var. durum). Theoretical andApplied Genetics, 121, 1047-1058

Xie W, Ben-David R, Zeng B, Distelfeld A, Roder M S, DinoorA, Fahima T. 2012. Identification and characterization of anovel powdery mildew resistance gene PmG3M derivedfrom wild emmer wheat, Triticum dicoccoides. Theoreticaland Applied Genetics, 124, 911-922

Xue F, Ji W, Wang C, Zhang H, Yang B. 2012. High-densitymapping and marker development for the powdery mildewresistance gene PmAS846 derived from wild emmer wheat(Triticum turgidum var. dicoccoides). Theoretical andApplied Genetics, 124, 1549-1560

You F M, Huo N, Gu Y Q, Luo M C, Ma Y, Hane D, Lazo GR, Dvorak J, Anderson O D. 2008. BatchPrimer3: a highthroughput web application for PCR and sequencing primerdesign. BMC Bioinformatics, 9, 253.

Yu G T, Cai X W, Harris M O, Gu Y Q, Luo M C, Xu S S.2009. Saturation and comparative mapping of the genomicregion harboring Hessian fly resistance gene H26 in wheat.Theoretical and Applied Genetics, 118, 1589-1599

Zhang H T, Guan H Y, Li J T, Zhu J, Xie C J, Zhou Y L,Duan X Y, Yang T, Sun Q X, Liu Z Y. 2010. Genetic andcomparative genomics mapping reveals that a powderymildew resistance gene Ml3D232 originating from wildemmer co-segregates with an NBS-LRR analog in commonwheat (Triticum aestivum L.). Theoretical and AppliedGenetics, 121, 1613-1621

Zhang W J, Olson E, Saintenac C, Rouse M, Abate Z, Jin Y,Akhunov E, Pumphrey M, Dubcovsky J. 2010. Genetic mapsof stem rust resistance gene Sr35 in diploid and hexaploidwheat. Crop Science, 50, 2464-2474

Zhang Z C, Friesen T L, Xu S S, Shi G J, Liu Z H, RasmussenJ B, Faris J D. 2011. Two putatively homoeologous wheatgenes mediate recognition of SnTox3 to confer effectortriggeredsusceptibility to Stagonospora nodorum. The PlantJournal, 65, 27-38

Zhou R, Zhu Z, Kong X, Huo N, Tian Q, Li C, Jin P, Dong Y,Jia J. 2005. Development of wheat near-isogenic linesfor powdery mildew resistance. Theoretical and AppliedGenetics, 110, 640-648
[1] CHEN Bin, TIAN Yan-li, ZHAO Yu-qiang, WANG Yuan-jie, CHUAN Jia-cheng, LI Xiang, HU Bai-shi. Genomic characteristics of Dickeya fangzhongdai isolates from pear and the function of type IV pili in the chromosome[J]. >Journal of Integrative Agriculture, 2020, 19(4): 906-920.
[2] WANG Zhen-zhong, XIE Jing-zhong, GUO Li, ZHANG De-yun, LI Gen-qiao, FANG Ti-lin, CHEN Yongxing, LI Jun, WU Qiu-hong, LU Ping, LI Miao-miao, WU Hai-bin, ZHANG Huai-zhi, ZHANG Yan, YANG Wu-yun, LUO Ming. Molecular mapping of YrTZ2, a stripe rust resistance gene in wild emmer accession TZ-2 and its comparative analyses with Aegilops tauschii[J]. >Journal of Integrative Agriculture, 2018, 17(06): 1267-1275.
[3] ZHU Kun-peng, BAO Jian-dong, ZHANG Lian-hu, YANG Xue, LI Yuan, Zhu Ming-hui, LIN Qing-yun, ZHAO Ao, ZHAO Zhen, ZHOU Bo, LU Guo-dong. Comparative analysis of the genome of the field isolate V86010 of the rice blast fungus Magnaporthe oryzae from Philippines[J]. >Journal of Integrative Agriculture, 2017, 16(10): 2222-2230.
[4] XIE Jing-zhong, WANG Li-li, WANG Yong, ZHANG Huai-zhi, ZHOU Sheng-hui, WU Qiu-hong, CHEN Yong-xing, WANG Zhen-zhong, WANG Guo-xin, ZHANG De-yun, ZHANG Yan, HU Tie-zhu, LIU Zhi-yong. Fine mapping of powdery mildew resistance gene PmTm4 in wheat using comparative genomics[J]. >Journal of Integrative Agriculture, 2017, 16(03): 540-550.
[5] LING Jian, ZHANG Ji-xiang, ZENG Feng, CAO Yue-xia, XIE Bing-yan, YANG Yu-hong. Comparative genomics provide a rapid detection of Fusarium oxysporum f. sp. conglutinans[J]. >Journal of Integrative Agriculture, 2016, 15(4): 822-831.
No Suggested Reading articles found!