Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (8): 3024-3039    DOI: 10.1016/j.jia.2025.03.025
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Genome-wide analysis of the CaYABBY family in pepper and functional identification of CaYABBY5 in the regulation of floral determinacy and fruit morphogenesis

Ke Fang1, 2, Yi Liu1, 2, Zhiquan Wang1, 2, Xiang Zhang1, 2, Xuexiao Zou1, 2, Feng Liu1, 2#, Zhongyi Wang1, 2#

1 Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding/Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China

2 Yuelushan Laboratory, Changsha 410128, China

 Highlights 
This study systematically identified and characterized nine CaYABBY genes in the pepper genome.
CaYABBY5 is specifically expressed and functionally active in petals and carpels.
CaYABBY5 interacts with CaSEP3 to regulate floral organ determinacy and fruit morphogenesis.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

辣椒果实因其辛辣的口感、多样的风味和较高的营养价值而备受青睐。花器官和果实的发育直接决定了辣椒果实的品质。YABBY 基因家族在植物生长发育过程中发挥着多种重要功能,对花器官的发育具有至关重要的作用,但其在辣椒中的具体功能尚不明确。本研究系统鉴定了辣椒基因组中9个CaYABBY基因,发现其成员在生殖器官中呈现差异表达特征。其中,特异性表达于花瓣和心皮的CaYABBY5基因,通过辣椒基因沉默和番茄异位表达双重验证,揭示了该基因通过调控心皮形态发生影响花器官决定性与果实形态建成。蛋白互作分析发现,CaYABBY5与SEPALLATA3同源蛋白(SEP3)存在相互作用,且两者在辣椒花器官中呈现高度一致的表达模式,表明二者可能通过协同作用调控花-果形态建成。该研究首次解析了辣椒YABBY基因家族的功能特征,为茄科作物花器官发育调控网络研究提供了新视角。



Abstract  

Pepper fruit is highly favored for its spicy taste, diverse flavors, and significant nutritional benefits.  The proper development of flowers and fruits directly determines the quality of pepper fruit.  The YABBY gene family exhibits diverse functions in growth and development, which is crucial to the identity of flower organs.  However, the specific functions of these genes in pepper remain unclear.  In this study, nine CaYABBY genes were identified and characterized in pepper.  Most CaYABBY genes were highly expressed in reproductive organs, albeit with varying expression patterns.  The CaYABBY5 gene, uniquely expressed in petals and carpels, has been demonstrated to modulate floral organ determinacy and fruit shape through gene silencing in pepper and ectopic expression in tomato.  Protein interaction analysis revealed an interacting protein SEPALLATA3-like protein (SEP3), exhibiting a similar expression profile to CaYABBY5.  These findings suggest that CaYABBY5 may modulate the morphogenesis of floral organs and fruits by interacting with CaSEP3.  This study provided valuable insights into the classification and function of CaYABBY genes in pepper.

Keywords:  YABBY transcription factor        pepper        expression pattern        CaYABBY5        CaSEP3       flower organs development  
Received: 24 October 2024   Online: 27 March 2025   Accepted: 11 March 2025
Fund: 
This work was financially supported by the National Key Research and Development Program of China (2023YFD2300702), the Science and Technology Innovation Program of Hunan Province, China (2024RC3189), and the Natural Science Foundation of Hunan Province, China (2024JJ4023).
About author:  Ke Fang, E-mail: fk.wz@stu.hunau.edu.cn; #Correspondence Zhongyi Wang, E-mail: wangzhy@hunau.edu.cn; Feng Liu, E-mail: jwszjx@hunau.edu.cn

Cite this article: 

Ke Fang, Yi Liu, Zhiquan Wang, Xiang Zhang, Xuexiao Zou, Feng Liu, Zhongyi Wang. 2025. Genome-wide analysis of the CaYABBY family in pepper and functional identification of CaYABBY5 in the regulation of floral determinacy and fruit morphogenesis. Journal of Integrative Agriculture, 24(8): 3024-3039.

Adal A M, Binson E, Remedios L, Mahmoud S S. 2021. Expression of lavender AGAMOUS-like and SEPALLATA3-like genes promote early flowering and alter leaf morphology in Arabidopsis thalianaPlanta254, 54.

Alvarez J, Smyth D R. 1999. CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUSDevelopment126, 2377–2386.

Bailey T L, Johnson J, Grant C E, Noble W S. 2015. The MEME suite. Nucleic Acids Research43, 39–49.

Borovsky Y, Raz A, Doron-Faigenboim A, Zemach H, Karavani E, Paran I. 2022. Pepper fruit elongation is controlled by Capsicum annuum ovate family protein 20Frontiers in Plant Science12, 815589.

Bowman J L. 2000. The YABBY gene family and abaxial cell fate. Current Opinion in Plant Biology3, 17–22.

Bowman J L, Smyth D R. 1999. CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development126, 2387–2396.

Castañeda L, Giménez E, Pineda B, García-Sogo B, Ortiz-Atienza A, Micol-Ponce R, Angosto T, Capel J, Moreno V, Yuste-Lisbona F J, Lozano R. 2022. Tomato CRABS CLAW paralogues interact with chromatin remodeling factors to mediate carpel development and floral determinacy. New Phytologist234, 1059–1074.

Che G, Pan Y, Liu X, Li M, Zhao J, Yan S, He Y, Wang Z, Cheng Z, Song W, Zhou Z, Wu T, Weng Y, Zhang X. 2023a. Natural variation in CRABS CLAW contributes to fruit length divergence in cucumber. The Plant Cell35, 738–755.

Che G, Song W, Zhang X. 2023b. Gene network associates with CsCRC regulating fruit elongation in cucumber. Vegetable Research3, 7.

Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant13, 1194–1202.

Dai M, Zhao Y, Ma Q, Hu Y, Hedden P, Zhang Q, Zhou D X. 2007. The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism. Plant Physiology144, 121–133.

Ding B, Li J, Gurung V, Lin Q, Sun X, Yuan Y. 2021. The leaf polarity factors SGS3 and YABBYs regulate style elongation through auxin signaling in Mimulus lewisiiNew Phytologist232, 2191–2206.

Fernandez-Pozo N, Menda N, Edwards J D, Saha S, Tecle I Y, Strickler S R, Bombarely A, Fisher-York T, Pujar A, Foerster H, Yan A, Mueller L A. 2015. The Sol Genomics Network (SGN) - from genotype to phenotype to breeding. Nucleic Acids Research43, 1036–1041.

Gasteiger E. 2003. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research31, 3784–3788.

Goldshmidt A, Alvarez J P, Bowman J L, Eshed Y. 2008. Signals derived from YABBY gene activities in organ primordia regulate growth and partitioning of Arabidopsis shoot apical meristems. The Plant Cell20, 1217–1230.

Hao L, Zhang J, Shi S, Li P, Li D, Zhang T, Guo H. 2022. Identification and expression profiles of the YABBY transcription factors in wheat. PeerJ10, 12855.

He Q, Wu H, Zeng L, Yin C, Wang L, Tan Y, Lv W, Liao Z, Zheng X, Zhang S, Han Q, Wang D, Zhang Y, Xiong G, Wang Q. 2024. OsKANADI1 and OsYABBY5 regulate rice plant height by targeting GIBERELLIN 2-OXIDASE6The Plant Cell37, koae276.

Honma T, Goto K. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature409, 525–529.

Huang F, Xu G, Chi Y, Liu H, Xue Q, Zhao T, Gai J, Yu D. 2014. A soybean MADS-box protein modulates floral organ numbers, petal identity and sterility. BMC Plant Biology14, 89.

Kong L, Sun J, Jiang Z, Ren W, Wang Z, Zhang M, Liu X, Wang L, Ma W, Xu J. 2023. Identification and expression analysis of YABBY family genes in Platycodon grandiflorusPlant Signaling & Behavior18, 2163069.

Lamesch P, Berardini T Z, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander D L, Garcia-Hernandez M, Karthikeyan A S, Lee C H, Nelson W D, Ploetz L, Singh S, Wensel A, Huala E. 2012. The Arabidopsis Information Resource (TAIR): Improved gene annotation and new tools. Nucleic Acids Research40, 1202–1210.

Lescot M. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research30, 325–327.

Letunic I, Khedkar S, Bork P. 2021. SMART: Recent updates, new developments and status in 2020. Nucleic Acids Research49, 458–460.

Li T, Zhang M, Li M, Wang X, Xing S. 2023. Molecular characterization and expression analysis of YABBY genes in Chenopodium quinoaGenes14, 2103.

Li Z, Li G, Cai M, Priyadarshani S V G N, Aslam M, Zhou Q, Huang X, Wang X, Liu Y, Qin Y. 2019. Genome-wide analysis of the YABBY transcription factor family in pineapple and functional identification of AcYABBY4 involvement in salt stress. International Journal of Molecular Sciences20, 5863.

Lin Z Y, Zhu G F, Lu C Q, Gao J, Li J, Xie Q, Wei Y L, Jin J P, Wang F L, Yang F X. 2023. Functional conservation and divergence of SEPALLATA-like genes in floral development in Cymbidium sinenseFrontiers in Plant Science14, 1209834.

Liu F, Yu H, Deng Y, Zheng J, Liu M, Ou L, Yang B, Dai X, Ma Y, Feng S, He S, Li X, Zhang Z, Chen W, Zhou S, Chen R, Liu M, Yang S, Wei R, Li H, et al. 2017. PepperHub, an informatics hub for the chili pepper research community. Molecular Plant10, 1129–1132.

Liu F, Zhao J, Sun H, Xiong C, Sun X, Wang X, Wang Z, Jarret R, Wang J, Tang B, Xu H, Hu B, Suo H, Yang B, Ou L, Li X, Zhou S, Yang S, Liu Z, Yuan F, et al. 2023. Genomes of cultivated and wild Capsicum species provide insights into pepper domestication and population differentiation. Nature Communication14, 5487.

Liu G, Li C, Yu H, Tao P, Yuan L, Ye J, Chen W, Wang Y, Ge P, Zhang J, Zhou G, Zheng W, Ye Z, Zhang Y. 2020. GREEN STRIPE, encoding methylated TOMATO AGAMOUS-LIKE 1, regulates chloroplast development and Chl synthesis in fruit. New Phytologist228, 302–317.

Lu S, Wang J, Chitsaz F, Derbyshire M K, Geer R C, Gonzales N R, Gwadz M, Hurwitz D I, Marchler G H, Song J S, Thanki N, Yamashita R A, Yang M, Zhang D, Zheng C, Lanczycki C J, Marchler-Bauer A. 2020. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Research48, 265–268.

Lu Y, Zhu H. 2022. The regulation of nutrient and flavor metabolism in tomato fruit. Vegetable Research2, 5.

Masiero S, Colombo L, Grini P E, Schnittger A, Kater M M. 2011. The emerging importance of type I MADS box transcription factors for plant reproduction. The Plant Cell23, 865–872.

Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar G A, Sonnhammer E L L, Tosatto S C E, Paladin L, Raj S, Richardson L J, Finn R D, Bateman A. 2021. Pfam: The protein families database in 2021. Nucleic Acids Research, 49, 412–419.

Pelaz S, Ditta G S, Baumann E, Wisman E, Yanofsky M F. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature405, 200–203.

Pelaz S, Gustafson-Brown C, Kohalmi S E, Crosby W L, Yanofsky M F. 2001. APETALA1 and SEPALLATA3 interact to promote flower development. The Plant Journal26, 385–394.

Robles P, Pelaz S. 2005. Flower and fruit development in Arabidopsis thalianaInternational Journal of Developmental Biology49, 633–643.

Sakai H, Lee S S, Tanaka T, Numa H, Kim J, Kawahara Y, Wakimoto H, Yang C, Iwamoto M, Abe T, Yamada Y, Muto A, Inokuchi H, Ikemura T, Matsumoto T, Sasaki T, Itoh T. 2013. Rice annotation project database (RAP-DB): An Integrative and interactive database for rice genomics. Plant and Cell Physiology54, 6.

Sarojam R, Sappl P G, Goldshmidt A, Efroni I, Floyd S K, Eshed Y, Bowman J L. 2010. Differentiating Arabidopsis shoots from leaves by combined YABBY activities. The Plant Cell22, 2113–2130.

Sawa S, Watanabe K, Goto K, Kanaya E, Morita E H, Okada K. 1999. FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes & Development13, 1079–1088.

Shen H, Luo B, Ding Y, Xiao H, Chen G, Yang Z, Hu Z, Wu T. 2024. The YABBY transcription factor, SlYABBY2a, positively regulates fruit septum development and ripening in tomatoes. International Journal of Molecular Sciences25, 5206.

Siegfried K R, Eshed Y, Baum S F, Otsuga D, Drews G N, Bowman J L. 1999. Members of the YABBY gene family specify abaxial cell fate in ArabidopsisDevelopment126, 4117–4128.

Smaczniak C, Immink R G, Muiño J M, Blanvillain R, Busscher M, Busscher-Lange J, Dinh Q D, Liu S, Westphal A H, Boeren S, Parcy F, Xu L, Carles C C, Angenent G C, Kaufmann K. 2012a. Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proceedings of the National Academy of Sciences of the United States of America109, 1560–1565.

Smaczniak C, Immink R G H, Angenent G C, Kaufmann K. 2012b. Developmental and evolutionary diversity of plant MADS-domain factors: Insights from recent studies. Development139, 3081–3098.

Song J, Shang L, Li C, Wang W, Wang X, Zhang C, Ai G, Ye J, Yang C, Li H, Hong Z, Larkin RM, Ye Z, Zhang J. 2022. Variation in the fruit development gene POINTED TIP regulates protuberance of tomato fruit tip. Nature Communication13, 5940.

Sun L, Wei Y Q, Wu K H, Yan J Y, Xu J N, Wu Y R, Li G X, Xu J M, Harberd N P, Ding Z J, Zheng S J. 2021. Restriction of iron loading into developing seeds by a YABBY transcription factor safeguards successful reproduction in ArabidopsisMolecular Plant14, 1624–1639.

Tsaballa A, Pasentsis K, Darzentas N, Tsaftaris A S. 2011. Multiple evidence for the role of an Ovate-like gene in determining fruit shape in pepper. BMC Plant Biology11, 46.

Villanueva J M, Broadhvest J, Hauser B A, Meister R J, Schneitz K, Gasser C S. 1999. INNER NO OUTER regulates abaxial-adaxial patterning in Arabidopsis ovules. Genes & Development13, 3160–3169.

Vrebalov J, Pan I L, Arroyo A J M, McQuinn R, Chung M, Poole M, Rose J, Seymour G, Grandillo S, Giovannoni J, Irish V F. 2009. Fleshy fruit expansion and ripening are regulated by the tomato SHATTERPROOF gene TAGL1The Plant Cell21, 3041–3062.

Wan H, Yuan W, Ruan M, Ye Q, Wang R, Li Z, Zhou G, Yao Z, Zhao J, Liu S, Yang Y. 2011. Identification of reference genes for reverse transcription quantitative real-time PCR normalization in pepper (Capsicum annuum L.). Biochemical and Biophysical Research Communications416, 24–30.

Wang Q, Reddy V A, Panicker D, Mao H, Kumar N, Rajan C, Venkatesh P N, Chua N, Sarojam R. 2016. Metabolic engineering of terpene biosynthesis in plants using a trichome-specific transcription factor MsYABBY5 from spearmint (Mentha spicata). Plant Biotechnology Journal14, 1619–1632.

Wang S, Wang K, Li Z, Li Y, He J, Li H, Wang B, Xin T, Tian H, Tian J, Zhang G, Li H, Huang S, Yang X. 2022. Architecture design of cucurbit crops for enhanced productivity by a natural allele. Nature Plants8, 1394–1407.

Wang W, Ma J, Liu H, Wang Z, Nan R, Zhong T, Sun M, Wang S, Yao Y, Sun F, Zhang C, Xi Y. 2024. Genome-wide analysis of the switchgrass YABBY family and functional characterization of PvYABBY14 in response to ABA and GA stress in ArabidopsisBMC Plant Biology24, 114.

Weigel D, Meyerowitz E M. 1994. The ABCs of floral homeotic genes. Cell78, 203–209.

Wheeler T J, Eddy S R. 2013. nhmmer: DNA homology search with profile HMMs. Bioinformatics29, 2487–2489.

Wu J, Li P, Li M, Zhu D, Ma H, Xu H, Li S, Wei J, Bian X, Wang M, Lai Y, Peng Y, Li H, Rahman A, Wu S. 2024a. Heat stress impairs floral meristem termination and fruit development by affecting the BR-SlCRCa cascade in tomato. Plant Communications5,100790.

Wu J, Li P, Zhu D, Ma H, Li M, Lai Y, Peng Y, Li H, Li S, Wei J, Bian X, Rahman A, Wu S. 2024b. SlCRCa is a key D-class gene controlling ovule fate determination in tomato. Plant Biotechnology Journal22, 1966–1980.

Xiang L, Chen Y, Chen L, Fu X, Zhao K, Zhang J, Sun C. 2018. B and E MADS-box genes determine the perianth formation in Cymbidium goeringii Rchb.fPhysiologia Plantarum162, 353–369.

Yan S, Ning K, Wang Z, Liu X, Zhong Y, Ding L, Zi H, Cheng Z, Li X, Shan H, Lv Q, Luo L, Liu R, Yan L, Zhou Z, Lucas W J, Zhang X. 2020. CsIVP functions in vasculature development and downy mildew resistance in cucumber. PLoS Biology18, 3000671.

Yang T, He Y, Niu S, Zhang Y. 2022. A YABBY gene CRABS CLAW a (CRCa) negatively regulates flower and fruit sizes in tomato. Plant Science320, 111285.

Yu Y, Hu H, Voytas D F, Doust A N, Kellogg E A. 2023. The YABBY gene SHATTERING1 controls activation rather than patterning of the abscission zone in Setaria viridisNew Phytologist240, 846–862.

Zhang S, Tan F Q, Chung C H, Slavkovic F, Devani R S, Troadec C, Marcel F, Morin H, Camps C, Gomez Roldan M V, Benhamed M, Dogimont C, Boualem A, Bendahmane A. 2022. The control of carpel determinacy pathway leads to sex determination in cucurbits. Science378, 543–549.

Zhang T, Wu A, Hu X, Deng Q, Ma Z, Su L. 2023. Comprehensive study of rice YABBY gene family: evolution, expression and interacting proteins analysis. PeerJ11, 14783.

Zhang X, Ding L, Song A, Li S, Liu J, Zhao W, Jia D, Guan Y, Zhao K, Chen S, Jiang J, Chen F. 2022. DWARF AND ROBUST PLANT regulates plant height via modulating gibberellin biosynthesis in chrysanthemum. Plant Physiology190, 2484–2500.

Zhang Y, Zhang B, Yang T, Zhang J, Liu B, Zhan X, Liang Y. 2020. The GAMYB-like gene SlMYB33 mediates flowering and pollen development in tomato. Horticulture Research7, 133.

Zhao S P, Lu D, Yu T F, Ji Y J, Zheng W J, Zhang S X, Chai S C, Chen Z Y, Cui X Y. 2017. Genome-wide analysis of the YABBY family in soybean and functional identification of GmYABBY10 involvement in high salt and drought stresses. Plant Physiology and Biochemistry119, 132–146.

Zhao T, Ni Z, Dai Y, Yao Y, Nie X, Sun Q. 2006. Characterization and expression of 42 MADS-box genes in wheat (Triticum aestivum L.). Molecular Genetics and Genomics276, 334.

Zhou Z, Bi G, Zhou J M. 2018. Luciferase complementation assay for protein-protein interactions in plants. Current Protocols in Molecular Biology3, 42–50.

Zhu Q, Deng L, Chen J, Rodríguez GR, Sun C, Chang Z, Yang T, Zhai H, Jiang H, Topcu Y, Francis D, Hutton S, Sun L, Li CB, van der Knaap E, Li C. 2023. Redesigning the tomato fruit shape for mechanized production. Nature Plants, 9, 1659–1674.

[1] HAN Li-jie, SONG Xiao-fei, WANG Zhong-yi, LIU Xiao-feng, YAN Li-ying, HAN De-guo, ZHOU Zhao-yang, ZHANG Xiao-lan. Genome-wide analysis of OVATE family proteins in cucumber (Cucumis sativus L.)[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1321-1331.
No Suggested Reading articles found!