Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (7): 2841-2856    DOI: 10.1016/j.jia.2024.12.013
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Comparing carbon sequestration efficiency in chemically separated soil organic carbon fractions under long-term fertilization in three major Chinese croplands

Hu Xu1, 2*, Adnan Mustafa2, 3*, Lu Zhang2, 4, Shaomin Huang5, Hongjun Gao6, Mohammad Tahsin Karimi Nezhad7, Nan Sun2#, Minggang Xu2#

1 Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture and Rural Affairs/College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China

2 State Key Laboratory of Efficient Utilization of Arable Land in China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China

3 Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China

4 Qiyang Farmland Ecosystem National Observation and Research Station/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China

5 Institute of Plant Nutrition and Environmental Resources Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China

6 Agricultural Resources and Environment Research Center, Jilin Academy of Agricultural Sciences, Changchun 130124, China

7 Department of Forest Ecology, Silva Tarouca Research Institute, Brno 60200, Czech Republic

 Highlights 

 Manure with chemical fertilizers boosted SOC stocks and enhanced CSE across SOC pools.
Non-labile OC was the main driver of SOC stabilization, especially in the passive pool.
The CSE of SOC fractions and pools declined with greater OC input, temperature, and precipitation.  

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

化肥配施有机肥通过影响农田有机碳输入和有机碳组分稳定性,因而被认为是提升土壤有机碳固存的有效措施。然而,关于长期施肥下有机碳氧化难易组分的固存效率特征及其对外源有机碳输入响应的信息非常有限,尤其是不同点位间研究。本研究依托位于公主岭、郑州和祁阳的长期定位试施肥验(20年),探究不施肥(CK)、化学氮磷钾肥NPK)和化肥配施有机肥NPKM)下不同有机碳化学组分(高活性有机碳组分-VLC、中活性有机碳组分-LC,低活性有机碳组分-LLC和稳定有机碳组分-NLC)的固存速率和固存效率特征及其与有机碳输入的关系。结果表明,与CK相比,NPKM提高了所有组分的有机碳储量,固存速率和效率,且各点位间均表现相同趋势。特别是对于VLCNLC,公主岭、祁阳和郑州点位NPKM下有机碳储量分别比CK显著增加4383%7786%7382%。然而,相比于初始值,公主岭、郑州和祁阳点位NPKM处理NLC有机碳储量增加幅度最大,分别达6.657.167.35 Mg ha-1。同样,NPKM处理NLC的固碳效率最高,其次是VLCLCLLC,且公主岭点位的稳定组分的固碳效率(8.56%)高于郑州(6.10%)和祁阳(4.61%)点位。此外,惰性库(NLC+LLC)的固碳效率显著高于活性库(VLC+LC),且公主岭点位惰性库的固碳效率最高。冗余分析表明,各有机碳组分和相应库的固碳效率与年均碳输入、年均降雨和年均温度存在负相关关系,而与初始土壤有机碳和全氮含量存在正相关。这些结果表明,土壤固存有机碳的稳定性差异进一步受点位特征和有机碳输入变化的调控。



Abstract  


The combined application of organic manure and chemical fertilizers is an effective way to enhance soil organic carbon (SOC) sequestration through its influences on organic carbon (OC) input and the stability of SOC fractions.  However, there is limited information on the carbon sequestration efficiency (CSE) of chemically separated SOC fractions and its response to OC input under long-term fertilization regimes, especially at different sites.  This study used three long-term fertilization experiments in Gongzhuling, Zhengzhou and Qiyang spanning 20 years to compare the stocks and CSE in four different OC fractions (very labile OC, labile OC, less labile OC, and non-labile OC) and their relationships with annual OC input.  Three treatments of no fertilization (CK), chemical nitrogen, phosphorous, and potassium fertilizers (NPK), and chemical NPK combined with manure (NPKM) were employed.  The results showed that compared with CK, NPKM resulted in enhanced SOC stocks and sequestration rates as well as CSE levels of all fractions irrespective of experimental site.  Specifically for the very labile and non-labile OC fractions, NPKM significantly increased the SOC stocks by 43 and 83%, 77 and 86%, and 73 and 82% in Gongzhuling, Qiyang, and Zhengzhou relative to CK, respectively.  However, the greatest changes in SOC stock relative to the initial value were associated with non-labile OC fractions in Gongzhuling, Zhengzhou, and Qiyang, which reached 6.65, 7.16, and 7.35 Mg ha–1 under NPKM.  Similarly, the highest CSE was noted for non-labile OC fractions under NPKM followed sequentially by the very labile OC, labile OC, and less-labile OC fractions, however a CSE of 8.56% in the non-labile OC fraction for Gongzhuling was higher than the values of 6.10 and 4.61% in Zhengzhou and Qiyang, respectively.  In addition, the CSE for the passive pool (very labile+labile OC fractions) was higher than the active pool (less-labile+non-labile OC fractions), with the highest value in Gongzhuling.  The redundancy analysis revealed that the CSEs of fractions and pools were negatively influenced by annual OC input, mean annual precipitation and temperature, but positively influenced by the initial SOC and total nitrogen contents.  This suggests that differential stability of sequestered OC is further governed by indigenous site characteristics and variable amounts of annual OC input.


Keywords:  long-term field experiment       fertilization        carbon sequestration efficiency        organic carbon stability        organic carbon fractionation  
Received: 03 July 2024   Online: 12 December 2024   Accepted: 07 November 2024
Fund: 

The research support from the National Natural Science Foundation of China (42177341) is highly acknowledged.  

About author:  Hu Xu, E-mail: xuhu01@nwafu.edu.cn; #Correspondence Minggang Xu, E-mail: xuminggang@caas.cn; Nan Sun, E-mail: sunnan@caas.cn * These authors contribute equally to this study.

Cite this article: 

Hu Xu, Adnan Mustafa, Lu Zhang, Shaomin Huang, Hongjun Gao, Mohammad Tahsin Karimi Nezhad, Nan Sun, Minggang Xu. 2025. Comparing carbon sequestration efficiency in chemically separated soil organic carbon fractions under long-term fertilization in three major Chinese croplands. Journal of Integrative Agriculture, 24(7): 2841-2856.

Abdalla K, Sun Y, Zarebanadkouki M, Gaiser T, Seidel S, Pausch J. 2022. Long-term continuous farmyard manure application increases soil carbon when combined with mineral fertilizers due to lower priming effects. Geoderma428, 116216.

Abrar M M, Shah S A A, Sun N, Mehmood K, Aziz T, Waqas M A, Luo Y Q, Zhou B K, Ma X Z, Xu M G, Mustafa A. 2023. Long-term manure application enhances organic carbon and nitrogen stocks in Mollisol subsoil. Land Degradation & Development34, 815–832.

Abrar M M, Xu H, Aziz T, Sun N, Mustafa A, Aslam M W, Shah S A A, Mehmood K, Zhou B K, Ma X Z, Chen X N, Xu M G. 2021. Carbon, nitrogen, and phosphorus stoichiometry mediate sensitivity of carbon stabilization mechanisms along with surface layers of a Mollisol after long-term fertilization in Northeast China. Journal of Soils and Sediments21, 705–723.

Benbi D K, Brar K, Toor A S, Sharma S. 2015. Sensitivity of labile soil organic carbon pools to long-term fertilizer, straw, and manure management in rice–wheat system. Pedosphere, 25, 534–545.

Bhattacharyya S S, Ros G H, Furtak K, Iqbal H M, Parra-Saldívar R. 2022. Soil carbon sequestration - An interplay between soil microbial community and soil organic matter dynamics. Science of the Total Environment815, 152928

Cai A D, Xu M G, Wang B R, Zhang W J, Liang G P, Hou E Q, Luo Y Q. 2019. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil and Tillage Research189, 168–175.

Chan K Y, Bowman A, Oates A. 2001. Oxidizible organic carbon fractions and soil quality changes in an Oxic Paleustalf under different pasture leys. Soil Science166, 61–67.

Chaudhary S, Dheri G S, Brar B S. 2017. Long-term effects of NPK fertilizers and organic manures on carbon stabilization and management index under rice–wheat cropping system. Soil and Tillage Research166, 59–66.

Chen X N, Xu H, Mustafa A, Huang Q H, Liu K L, Sun N, Xu M G. 2023. Differences of SOC storage and stability between soil layers influenced by long-term fertilization in a typical paddy soil of Southern China. Chemical and Biological Technologies in Agriculture10, 97.

Chenu C, Angers D A, Barré P, Derrien D, Arrouays D, Balesdent J. 2019. Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil and Tillage Research188, 41–52.

Ćirić V I, Manojlović M, Svarc-Gajic J, Šeremešić S. 2023. The Assessment of soil organic carbon pools in different soils using four fractionation methods. Communications in Soil Science and Plant Analysis54, 1910–1922.

Conant R T, Ryan M G, Ågren G I, Birge H E, Davidson E A, Eliasson P E, Evans S E, Frey S D, Giardina C P, Hopkins F M, Hyvönen R. 2011. Temperature and soil organic matter decomposition rates - synthesis of current knowledge and a way forward. Global Change Biology17, 3392–3404.

Condron L, Stark C, O’Callaghan M, Clinton P, Huang Z. 2010. The role of microbial communities in the formation and decomposition of soil organic matter. In: Dixon G, Tilston E, eds., Soil Microbiology and Sustainable Crop Production. Springer, Dordrecht. pp. 81–118.

Datta A, Mandal B, Badole S, Majumder S P, Padhan D, Basak N, Barman A, Kundu R, Narkhede W N. 2018. Interrelationship of biomass yield, carbon input, aggregation, carbon pools and its sequestration in Vertisols under long-term sorghum–wheat cropping system in semi-arid tropics. Soil and Tillage Research184, 164–175.

Denef K, Zotarelli L, Boddey R M, Six J. 2007. Microaggregate-associated carbon as a diagnostic fraction for management-induced changes in soil organic carbon in two Oxisols. Soil Biology & Biochemistry39, 1165–1172.

Di J Y, Feng W T, Zhang W J, Cai A D, Xu M G. 2017. Soil organic carbon saturation deficit under primary agricultural managements across major croplands in China. Ecosystem Health and Sustainability, 3, 1364047.

Dixit A K, Rai A K, Prasad M, Choudhary M, Kumar S, Srivastava M K, Rai S K, Singh H V. 2020. Long-term fertilization effects on carbon pools and carbon management index of loamy soil under grass–forage legumes mixture in semi-arid environment. Archives of Agronomy and Soil Science66, 1373–1383.

Dungait J A, Hopkins D W, Gregory A S, Whitmore A P. 2012. Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biology18, 1781–1796.

Feyissa A, Yang F, Feng J, Wu J J, Chen Q, Cheng X L. 2020. Soil labile and recalcitrant carbon and nitrogen dynamics in relation to functional vegetation groups along precipitation gradients in secondary grasslands of South China. Environmental Science and Pollution Research27, 10528–10540.

Gao S J, Li S, Zhou G P, Cao W D. 2023.The potential of green manure to increase soil carbon sequestration and reduce the yield-scaled carbon footprint of rice production in southern China. Journal of Integrative Agriculture22, 2233–2247.

Han L F, Sun K, Jin J, Xing B S. 2016. Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature. Soil Biology and Biochemistry94, 107–121.

Hayatu N G, Liu Y R, Han T F, Daba N A, Zhang L, Shen Z, Li J W, Muazu H, Lamlom S F, Zhang H M. 2023. Carbon sequestration rate, nitrogen use efficiency and rice yield responses to long-term substitution of chemical fertilizer by organic manure in a rice–rice cropping system. Journal of Integrative Agriculture22, 2848–2864.

Huang X L, Jia Z X, Jiao X Y, Wang J L, Huang X F. 2022. Long-term manure applications to increase carbon sequestration and macroaggregate-stabilized carbon. Soil Biology and Biochemistry174, 108827.

Johannes A, Matter A, Schulin R, Weisskopf P, Baveye P C, Boivin P. 2017. Optimal organic carbon values for soil structure quality of arable soils. Does clay content matter? Geoderma302, 14–21.

Kautsar V, Tang S, Kimani S M, Tawaraya K, Wu J, Toriyama K, Kobayashi K, Cheng W G. 2022. Carbon decomposition and nitrogen mineralization of foxtail and milk vetch incorporated into paddy soils for different durations of organic farming. Soil Science and Plant Nutrition68, 158–166.

Koven C D, Hugelius G, Lawrence D M, Wieder W R. 2017. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nature Climate Change7, 817–822.

Kundu S, Bhattacharyya R, Prakash V, Ghosh B N, Gupta H S. 2007. Carbon sequestration and relationship between carbon addition and storage under rainfed soybean–wheat rotation in a sandy loam soil of the Indian Himalayas. Soil and Tillage Research92, 87–95.

Lal R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science304, 1623–1627.

Li B Z, Song H, Cao W C, Wang Y J, Chen J S, Guo J H. 2021. Responses of soil organic carbon stock to animal manure application: A new global synthesis integrating the impacts of agricultural managements and environmental conditions. Global Change Biology27, 5356–5367.

Liang F, Li J W, Yang X Y, Huang S M, Cai Z J, Gao H J, Ma J Y, Cui X, Xu M G. 2016. Three-decade long fertilization-induced soil organic carbon sequestration depends on edaphic characteristics in six typical croplands. Scientific Reports6, 30350.

Liu K L, Huang J, Li D M, Yu X C, Ye H C, Hu H W, Hu Z H, Huang Q H, Zhang H M. 2019. Comparison of carbon sequestration efficiency in soil aggregates between upland and paddy soils in a red soil region of China. Journal of Integrative Agriculture18, 1348–1359.

Ma T, Zhu S S, Wang Z H, Chen D M, Dai G H, Feng B W, Su X Y, Hu H F, Li K H, Han W X, Liang C, Bai Y F, Feng X J. 2018. Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nature Communications9, 3480.

Mandal B, Majumder B, Adhya T K, Bandyopadhyay P K, Gangopadhyay A, Sarkar D, Kundu M C, Choudhury S G, Hazra G C, Kundu S, Samantaray R N. 2008. Potential of double-cropped rice ecology to conserve organic carbon under subtropical climate. Global Change Biology14, 2139–2151.

Matus F J. 2021. Fine silt and clay content is the main factor defining maximal C and N accumulations in soils: A meta-analysis. Scientific Reports11, 6438.

Mustafa A, Bartuška M, Fryčová K, Nezhad M T K, Frouz J. 2022. Comparison of zimmermann and six fractionation methods aimed at distinguishing between active, slow, and passive pools of soil organic matter. Journal of Soil Science and Plant Nutrition22, 3110–3117.

Mustafa A, Saeed Q, Nezhad M T K, Sun N, Gao H J, Zhu P, Naveed M, Xu M G. 2023. Physically separated soil organic matter pools as indicators of carbon and nitrogen change under long-term fertilization in a Chinese Mollisol. Environmental Research216, 114626.

Mustafa A, Xu H, Abrar M M, Shah S A A, Sun N, Saeed Q, Kamran M, Naveed M, Conde-Cid M, Gao H J, Zhu P, Xu M G. 2021. Long-term fertilization enhanced carbon mineralization and maize biomass through physical protection of organic carbon in fractions under continuous maize cropping. Applied Soil Ecology165, 103971.

Mustafa A, Xu M G, Shah S A A, Abrar M M, Sun N, Wang B R, Cai Z J, Saeed Q, Naveed M, Mehmood K, Núñez-Delgado A. 2020. Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China. Journal of Environmental Management270, 110894.

Pang D W, Chen J, Jin M, Li H Y, Luo Y L, Li W Q, Chang Y L, Li Y, Wang Z L. 2020. Changes in soil micro-and macro-aggregate associated carbon storage following straw incorporation. Catena190, 104555

Paul E A. 2016. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization. Soil Biology and Biochemistry98, 109–126.

Peng X H, Zhu Q H, Zhang Z B, Hallett P D. 2017. Combined turnover of carbon and soil aggregates using rare earth oxides and isotopically labelled carbon as tracers. Soil Biology and Biochemistry109, 81–94.

Purakayastha T J, Rudrappa L, Singh D, Swarup A, Bhadraray S. 2008. Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize–wheat–cowpea cropping system. Geoderma144, 370–378.

Ramesh T, Bolan N S, Kirkham M B, Wijesekara H, Kanchikerimath M, Rao C S, Sandeep S, Rinklebe J, Ok Y S, Choudhury B U, Wang H L, Tang C X, Wang X J, Song Z L, Freeman O M. 2019. Soil organic carbon dynamics: Impact of land use changes and management practices: A review. Advances in Agronomy156, 1–107.

Ren F L, Zhang R Q, Sun N, Li Y L, Xu M G, Zhang F S, Xu W. 2024. Patterns and driving factors of soil organic carbon sequestration efficiency under various manure regimes across Chinese croplands. AgricultureEcosystems & Environment359, 108723.

Shah S A A, Xu M G, Abrar M M, Mustafa A, Fahad S, Shah T, Yang X Y, Zhou W, Zhang S L, Sun N, Shi W Q. 2021. Long-term fertilization affects functional soil organic carbon protection mechanisms in a profile of Chinese loess plateau soil. Chemosphere267, 128897.

Shahbaz M, Kuzyakov Y, Heitkamp F. 2017. Decrease of soil organic matter stabilization with increasing inputs: Mechanisms and controls. Geoderma304, 76–82.

Six J, Conant R T, Paul E A, Paustian K. 2002. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil241, 155–176.

Steinweg J M, Plante A F, Conant R T, Paul E A, Tanaka D L. 2008. Patterns of substrate utilization during long-term incubations at different temperatures. Soil Biology and Biochemistry40, 2722–2728.

Stockmann U, Adams M A, Crawford J W, Field D J, Henakaarchchi N, Jenkins M, Minasny B, McBratney A B, De Courcelles V D R, Singh K, Wheeler I. 2013. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. AgricultureEcosystems & Environment164, 80–99.

Sun Y N, Huang S, Yu X C, Zhang W J. 2013. Stability and saturation of soil organic carbon in rice fields: Evidence from a long-term fertilization experiment in subtropical China. Journal of Soils and Sediments13, 1327–1334.

Sun Y T, Liao Y L, Zhang S X, Nie J, Lu Y H, Xie J. 2013. Effects of long-term fertilization on soil organic carbon pool and carbon sequestration under double rice cropping. Chinese Journal of Applied Ecology24, 732–740. (in Chinese)

Walkley A, Black I A. 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science37, 29–38.

Wang J Z, Lu C A, Xu M G, Zhu P, Huang S M, Zhang W J, Peng C, Chen X N, Wu L H. 2013. Soil organic carbon sequestration under different fertilizer regimes in north and northeast China: RothC simulation. Soil Use and Management29, 182–190.

Wang R J, Song J S, Feng Y T, Zhou J X, Xie J Y, Asif K, Che Z X, Zhang S L, Yang X Y. 2021. Changes in soil organic carbon pools following long-term fertilization under a rain-fed cropping system in the Loess Plateau, China. Journal of Integrative Agriculture20, 2512–2525.

Xia Q, Rufty T, Shi W. 2020. Soil microbial diversity and composition: Links to soil texture and associated properties. Soil Biology and Biochemistry149, 107953.

Xu H, Cai A D, Yang X Y, Zhang S L, Huang S M, Wang B R, Zhu P, Colinet G, Sun N, Xu M G, Zhang W J. 2023. Long-term organic substitution promotes carbon and nitrogen sequestration and benefit crop production in upland field. Agronomy13, 2381.

Xu H, Liu K L, Zhang W J, Rui Y C, Zhang J Y, Wu L, Colinet G, Huang Q H, Chen X N, Xu M G. 2020. Long-term fertilization and intensive cropping enhance carbon and nitrogen accumulated in soil clay-sized particles of red soil in South China. Journal of Soils and Sediments20, 1824–1833.

Xu M G, Lou Y L, Sun X L, Wang W, Baniyamuddin M, Zhao K. 2011. Soil organic carbon active fractions as early indicators for total carbon change under straw incorporation. Biology & Fertility of Soils47, 745–752.

Yan Q Y, Wu L J, Dong F, Yan S D, Li F, Jia Y Q, Zhang J C, Zhang R F, Huang X. 2024. Subsoil tillage enhances wheat productivity, soil organic carbon and available nutrient status in dryland fields. Journal of Integrative Agriculture23, 251–266.

Yan X, Zhou H, Zhu Q H, Wang X F, Zhang Y Z, Yu X C, Peng X. 2013. Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in southern China. Soil and Tillage Research130, 42–51.

Yang C Q, Wang X J, Li J N, Zhang G W, Shu H M, Hu W, Han H Y, Liu R X, Guo Z C. 2024. Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat–cotton cropping system. Journal of Integrative Agriculture23, 669–679.

Zhang W J, Wang X J, Xu M G, Huang S M, Liu H, Peng C. 2010. Soil organic carbon dynamics under long-term fertilizations in arable land of northern China. Biogeosciences7, 409–425.

Zhang W J, Xu, M G, Wang X J, Huang Q H, Nie, J, Li Z Z, Li S L, Hwang S W, Lee K B. 2012. Effects of organic amendments on soil carbon sequestration in paddy fields of subtropical China. Journal of Soils and Sediments12, 457–470.

Zhang X B, Sun N, Wu L H, Xu M G, Bingham I J, Li Z F. 2016. Effects of enhancing soil organic carbon sequestration in the topsoil by fertilization on crop productivity and stability: Evidence from long-term experiments with wheat–maize cropping systems in China. Science of the Total Environment562, 247–259.

Zhang Z, Kaye J P, Bradley B A, Amsili J P, Suseela V. 2022. Cover crop functional types differentially alter the content and composition of soil organic carbon in particulate and mineral-associated fractions. Global Change Biology28, 5831–5848.

Zhang Z D, Yang X M, Drury C F, Reynolds W D, Zhao L P. 2010. Mineralization of active soil organic carbon in particle size fractions of a Brookston clay soil under no-tillage and mouldboard plough tillage. Canadian Journal of Soil Science90, 551–557.

[1] ZHANG Nai-yu, WANG Qiong, ZHAN Xiao-ying, WU Qi-hua, HUANG Shao-min, ZHU Ping, YANG Xue-yun, ZHANG Shu-xiang. Characteristics of inorganic phosphorus fractions and their correlations with soil properties in three non-acidic soils[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3626-3636.
[2] HUANG Jing, DUAN Ying-hua, XU Ming-gang, ZHAI Li-mei, ZHANG Xu-bo, WANG Bo-ren, ZHANG Yang-zhu, GAO Su-duan, SUN Nan. Nitrogen mobility, ammonia volatilization, and estimated leaching loss from long-term manure incorporation in red soil[J]. >Journal of Integrative Agriculture, 2017, 16(09): 2082-2092.
[3] HUANG Qing-hai, LI Da-ming, LIU Kai-lou, YU Xi-chu, YE Hui-cai, HU Hui-wen, XU Xiao-lin. Effects of Long-Term Organic Amendments on Soil Organic Carbon in a Paddy Field: A Case Study on Red Soil[J]. >Journal of Integrative Agriculture, 2014, 13(3): 570-576.
No Suggested Reading articles found!