Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (6): 2025-2034    DOI: 10.1016/j.jia.2024.11.017
Commentary Advanced Online Publication | Current Issue | Archive | Adv Search |
Managing forage for grain: Strategies and mechanisms for enhancing forage production to ensure feed grain security

Ruixuan Xu1, Zheng Pu1, Shuangxin Han1, Hongqian Yu1, 3, Chuan Guo1, Qingsheng Huang2, Yingjun Zhang1#

1 College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China

2 Animal Husbandry and Veterinary Bureau, Ministry of Agriculture and Rural Affairs, Beijing 100125, China 

3 Institute of Forestry and Grassland Ecology, Ningxia Academy of Agricultural and Forestry Sciences, Ningxia 750001, China

 Highlights 
Growing demand for feed grain and the incoordination of crop planting and livestock farming resulted in security risks of feed grain security in China.
Four forage-based approaches were proposed to address safety risks in feed grains under the “Greater Food” approach.
“Managing forage for grain” needed to be supported via technical paths and policies as the forage industry develops to effectively increase the capacity to ensure feed grain security.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

中国仅有全球9%的耕地、6%的淡水资源,却生产粮食养育了全球近20%的人口。进入新世纪,从更好满足人民美好生活需要出发,顺应人民群众食物结构变化趋势,树立大食物观,不仅“米袋子”守得牢,“菜篮子”拎得稳,更要“奶罐子”装得满,“肉盘子”沉甸甸。然而,从现实情况看,尽管我国口粮供给已经安全,但从食物供给角度看,我国粮食仍然处于总量不足,尤其随着畜牧业快速发展,饲料粮成为影响粮食安全的主因。饲草作为草食家畜生产的物质基础,将在保障我国饲料粮安全中发挥何种作用?

“大食物观”的提出,改变了“以粮为纲”的旧观念,同时也突显出我国传统作物生产和畜牧业生产解耦合(种养分离)的困境,随着畜牧业规模化的发展,农田生产的粮食被更多地应用于畜产品生产,导致我国饲料粮安全风险增大,尤其是优质蛋白饲料供给面临着“卡脖子”困境。要将饭碗端稳端牢,必须立足于国内农业生产的有效供给,但我国耕地资源紧张,粮食安全压力大,降低草食家畜的饲料用粮,通过化草为粮,提高草食家畜畜产品生产效率,是解决这一困境的根本措施。

本文以“化草为粮-保障饲料粮安全的饲草策略和机制”为题,分析了我国饲料粮安全风险形成的历史与现实原因,以“人畜分粮”作为突破口,基于我国饲草产业现状和发展潜力,提出了“大食物观”下化解饲料粮安全风险的饲草方案:(1)种草增效-拓展饲草种植空间和种植模式,发挥饲草蛋白和能量供给能力;(2)种草肥田-提高耕地质量、固碳减排,实现藏粮于草;(3)改良草原-提高草地生产力,从草原要食物;(4)以草代粮-提高饲草在家畜日粮中的应用及转化效率,减少饲料粮消耗。该方案为种养耦合提供了技术路径,在我国饲料粮产需中长期紧平衡的情况下,减法节粮与加法增草需要一起做,才能切实保障我国饲料粮安全。

2022年,我国颁布了第一个专门针对饲草产业发展的规划《“十四五”全国饲草产业发展规划》,为增草增效提供了指南:饲草是草食畜牧业发展的物质基础,饲草产业是现代农业的重要组成部分,是调整优化农业结构的重要着力点;该指南为我国未来一段时间的饲草产业高质量发展确定了目标、内容和发展模式。随着优质饲草的巨大需求和农业绿色发展的紧迫要求,在政策保障和饲草产业技术进步的推动下,饲草产业将在我国粮食安全、生态文明和乡村振兴等重要战略建设上发挥更加积极的重要作用。



Abstract  

The “Greater Food” approach has replaced the older “taking grain production as a top priority” approach.  The importance of feed and forage as the material basis for guaranteeing high-quality development of the livestock industry has gradually become prominent.  However, owing to the tradition of “both human staple food and animal feed relying on grain production” in China and the decoupling of feed crop planting and livestock farming, the risk of feed grain security has increased, especially as it relates to the supply of high-quality protein feed ingredients from abroad, which is facing a bottleneck.  To ensure food security, effective domestic agricultural production should be adopted.  Nevertheless, guaranteeing the supply of high-quality protein feed through domestic soybean production is difficult because of limited arable land; furthermore, pressure on the staple food supply is still extreme.  In this article, the historical and realistic implications for the security risks of feed grain in China are analyzed.  Proposals are made to separate staple food grains for humans from the feed grain supply for animals and to develop high-quality forage to reduce feed grain use.  High-quality forage can be supplied via intercropping with grain crops in arable land and reseeding perennial legumes or grasses into natural grasslands.  However, “managing forage for grain” needs to be supported via technical paths and policies as the forage industry develops to effectively increase the capacity to ensure feed grain security.


Received: 19 January 2024   Online: 06 November 2024   Accepted: 12 September 2024
Fund: 

The work was funded by the China Agriculture Research System of MOF and MARA (CARS-34), the National Natural Science Foundation of China (32201471), the Development and Demonstration Project of Key Technologies for High Quality Development of Forage Industry in Ordos, China, and the fellowship of China Postdoctoral Science Foundation (2023T160697).  

About author:  Ruixuan Xu, Tel: +86-10-62734638, E-mail: xuruixuan@cau.edu.cn; #Correspondence Yingjun Zhang, Tel: +86-10-62733380, E-mail: zhangyj@cau.edu.cn

Cite this article: 

Ruixuan Xu, Zheng Pu, Shuangxin Han, Hongqian Yu, Chuan Guo, Qingsheng Huang, Yingjun Zhang. 2025. Managing forage for grain: Strategies and mechanisms for enhancing forage production to ensure feed grain security. Journal of Integrative Agriculture, 24(6): 2025-2034.

Aflakpui G K S, Vyn T J, Anderson G W, Clements D R, Hall M R, Swanton C J. 1994. Crop management systems for corn (Zea mays) following established alfalfa (Medicago sativa). Canadian Journal of Plant Science74, 255–259.

Animal Husbandry and Veterinary Bureau, Ministry of Agriculture and Rural Affairs and National Animal Husbandry Service Station. 2022. China Grass Industry Statistics. China Agriculture Press, Beijing. (in Chinese)

Chang S J, Liu N, Wang X Y, Zhang Y J, Xie Y. 2012. Alfalfa carbon and nitrogen sequestration patterns and effects of temperature and precipitation in three agro-pastoral ecotones of northern China. PLoS ONE7, e50544.

Chen S P, Wang W T, Xu W T, Wang Y, Wan H W, Chen D M, Tang Z Y, Tang X L, Zhou G Y, Xie Z Q, Zhou D W, Shangguan Z P, Huang J H, He J S, Wang Y F, Sheng J D, Tang L S, Li X R, Dong M, Wu Y, et al. 2018. Plant diversity enhances productivity and soil carbon storage. Proceedings of the National Academy of Sciences of the United States of America115, 4027–4032.

Cui Z L, Zhang H Y, Chen X P, Zhang C C, Ma W Q, Huang C D, Zhang W F, Mi G H, Miao Y X, Li X L, Gao Q, Yang J C, Wang Z H, Ye Y L, Guo S W, Lu J W, Huang J L, Lv S H, Sun Y X, Liu Y Y, et al. 2018. Pursuing sustainable productivity with millions of smallholder farmers. Nature555, 363–366.

Du S J, Zhang Y L, Zhang Z Y, Ji Y Z, Yin X, Han J, Zhang L J. 2021. Nitrogen use efficiency and fate of new urea types in a winter wheat-summer maize rotation system. Journal of Plant Nutrition and Fertilizers1, 24–34.

Ghose B. 2015. Food security and food self-sufficiency in China: From past to 2050. Food & Energy Security3, 86–95.

Gu B J, Duan J K, Ren C C, Wang S T, Wang C. 2021. Large-scale farming promotes agricultural green development in China. Journal of Agricultural Resources and Environment38, 709–715. (in Chinese)

Guo M Q, Liu L, Xing J Y, Yang G W, Zhang Y J. 2023. Species selection for no-tillage reseeding in grassland restoration based on plant-soil feedback. Acta Prataculturae Sinica32, 14−23. (in Chinese)

Jin S, Zhang B, Wu B, Han D, Hu Y, Ren C, Zhang C, Wei X, Wu Y, Mol A P J, Reis S, Gu B, Chen J. 2021. Decoupling livestock and crop production at the household level in China. Nature Sustainability4, 48–55.

Li L, Huang G, Zhang R, Cai L, Luo Z, Jin X, Zhang E, Bellotti B, Unkovich M. 2011. Effects of lucerne removal time on soil water and productivity in a lucerne-wheat rotation on the Western Loess Plateau. Acta Agronomica Sinica37, 686–693.

Liu H, Cui Y N, Zhong Y. 2023. New measures and prospect of ensuring feed grain supply by opening high levels and letting go. World Agriculture6, 25–36. (in Chinese)

Liu Y M. 2018. The troubles of the growth of dairy farming in China land for success, land for defeat. China Dairy11, 2–7. (in Chinese)

Lu X S. 2021.The Quality and quantity issues of alfalfa products development. China Dairy8, 9–12. (in Chinese)

Lv X Z, Wang C Z, Qiu X D, Yao G L, Xiao J N, Shi Y H, Zhu X Y. 2018. Effects of alfalfa meal on growth performance, serum biochemical indexes, carcass quality and economic benefit of finishing pigs. Chinese Journal of Animal Nutrition30, 1693–1702. (in Chinese)

National Bureau of Statistics of the People’s Republic of China 2022. China Statistical Yearbook. China Statistics Press. (in Chinese)

Pang J, Wang Y, Lambers H, Tibbett M, Siddique K H M, Ryan M H. 2013. Commensalism in an agroecosystem: Hydraulic redistribution by deep-rooted legumes improves survival of a droughted shallow-rooted legume companion. Physiologia Plantarum149, 79–90.

Pauferro N, Guimarães A P, Jantalia C P, Urquiaga S, Alves B J R, Boddey R M. 2010. 15N natural abundance of biologically fixed N2 in soybean is controlled more by the Bradyrhizobium strain than by the variety of the host plant. Soil Biology and Biochemistry42, 1694–1700.

Qi M F, Lou C H, Zhu X Y, Chen W X, Shi Y H, Wang C Z. 2018. Effects of different levels of alfalfa meal on productivity and reproductive performance of primiparous sows. Acta Prataculturae Sincia27, 158–170. (in Chinese)

Ren J Z, Hou F J. 1999. Change the traditional concept of food and try out food equivalence. Acta Pratacultural SinicaS1, 3–5. (in Chinese)

Ren J Z, Nan Z B, Lin H L. 2005. Taking the grassland agro-system to insure food security. Acta Pratacultural Sinica3, 1–10. (in Chinese)

Renard D, Tilman D. 2019. National food production stabilized by crop diversity. Nature571, 257–260.

Shi Y H, Ma J X, Lu Z H, Liu B S, Wang Z C, Ciu Y L. 2024. Application of alfalfa replacing soybean meal diet in pig production. Feed Industry5, 1–6. (in Chinese)

Shi Z Z, Wang M L. 2021. Evolution and prospect of China’s forage industry policy. Chinese Journal of Grassland2, 107–114. (in Chinese)

Smith M A, Carter P R, Imholte A A. 1992. Conventional vs. no-till corn following alfalfa/grass: Timing of vegetation kill. Agronomy Journal5, 780–786.

Wang M L. 2023. Focusing on the expansion of pasture industry to ensure the high-quality development of livestock industry. Modern Agriculture6, 3–6

Wang X J, He Y P, Jiang H P. 2020. China’s food security during the tenth five-year Plan: Situation, problems and countermeasures. Reform9, 27–39. (in Chinese)

Wu M M, Li Y H. 2024. Breaking “alkali” to rebirth and upgrading the “pasture green”. Hebei Economic Daily. [2024-6-25]. https://hebei.hebnews.cn/2024–06/25/content_9198329.htm

Xu H, Qiao J L, Huang X F, Ji L L. 2022. Investigation on cultivated land problem. Economic Daily. [2022-2-14].http://paper.ce.cn/jjrb/html/2022-02/14/content_457991.htm

Xu R X, Zhang Y J. 2021. The application prospect of forage intercropping in the agricultural region. China Dairy8, 3–8. (in Chinese)

Xu R, Zhao H, Liu G, Li Y, Li S, Zhang Y, Liu N, Ma L. 2022. Alfalfa and silage maize intercropping provides comparable productivity and profitability with lower environmental impacts than wheat–maize system in the North China plain. Agricultural Systems195, 103305.

Xu R X, Zhao H M, Liu G B, You Y L, Ma L, Liu N, Zhang Y J. 2021. Effects of nitrogen and maize plant density on forage yield and nitrogen uptake in an alfalfa–silage maize relay intercropping system in the North China Plain. Field Crops Research263, 108068.

Xue Z, Wang Y, Palmer E, Zhang Y. 2023. Intercropping of orchardgrass and alfalfa improves soil fertility, forage yield, feeding values and land use efficiency while limiting ruminal greenhouse gas emissions. Grass and Forage Science78, 275–287.

Yang W J. 1998. Re-understanding of China’s grain problem. Zhejiang Social Sciences3, 79–84. (in Chinese)

Yang X, Ma J X, Huang W K, Lu J D, Niu J K, Zhang X X, Li S R, Cao S X, Wang Z C, Shi Y H. 2023. Effect of replacing soybean meal with alfalfa leaf meal on serum antioxidant level, immune function and reproductive performance of sows. Journal of Henan Agricultural University4, 615–622.(in Chinese)

You L C, Ros G H, Chen Y L, Shao Q, Young M D, Zhang F S, Vries W D. 2023. Global mean nitrogen recovery efficiency in croplands can be enhanced by optimal nutrient, crop and soil management practices. Nature Communications14, 5747.

Yu C Q. 2019. The coupled effects of water and nitrogen on China’s food and environmental securities. Scientia Sinica Terrae49, 19. (in Chinese)

Zhang H, Liu N, Wang Z J, Du J M, Wang L F, Mi Y X, Yu H Q, Xu H K, Zhang Y J. 2022. Grazing-livestock system productivity of legume-grass mixtures in the Loess Plateau of China. Pratacultural Science39, 1890–1903. (in Chinese)

Zhang X, Davidson E A, Mauzerall D L, Searchinger T D, Dumas P, Shen Y. 2015. Managing nitrogen for sustainable development. Nature528, 51–59.

Zhang X D, Lai B T, Fang Q, Lou L F, Wang X, Zhu L Y. 2010. Effect of alfalfa meal on intestinal flora in laying hens’ diet. Zhejiang Animal Husbandry Veterinarian35, 7–9. (in Chinese)

Zhang Y, Huang Y, Liu Y, Fan Y B, Peng J L, Tang Z, Xia C, Nan Z B. 2023. Strategic thinking on developing grassland agriculture to ensure food safety under the new situation. Chinese Journal of Engineering Science25, 73–80. (in Chinese)

Zhang Y J. 2019. Industrial development of forage crops in China. China Dairy4, 2–9. (in Chinese)

Zhang Y J, Yang G W, Liu N, Chang S J, Wang X Y. 2013. Review of grassland management practices for carbon sequstration. Acta Prataculturae Sinica22, 290–299. (in Chinese)

Zhang Y J, Zhou J Q, Yang G W, Jing J Y, Liu N. 2020, Theory and application of no-tillage reseeding in degraded grasslands. Chinese Science Bulletin65, 1546–1555. (in Chinese)

Zhou J Q, Wilson G W, Cobb A B, Yang G W, Zhang Y J. 2019. Phosphorus and mowing improve native alfalfa establishment, facilitating restoration of grassland productivity and diversity. Land Degradation and Development30, 647–657.

Zhou Y, Li X H, Liu Y S. 2021. Cultivated land protection and rational use in China. Land Use Policy106, 105454.

Zhu X Y, An Y, Liu Z K, Yan R R, Shao C L, Xu D W, Xu L J, Sun Z W, Wang D K, Zhang H F, Xin X P. 2023. Comparing ecological effect between traditional cropland and alfalfa grassland based on life cycle assessment. Acta Ecologica Sinica43, 9148–9163.

No related articles found!
No Suggested Reading articles found!