Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (2): 610-622    DOI: 10.1016/j.jia.2024.10.001
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
PrDA1-1 and its interacting proteins PrTCP1/PrTCP9 in flare tree peony affect yield by regulating seed weight and number

Chunyan He1, 2, 3, 4, Fangyun Cheng1, 2, 3, 4#

1 State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China

2 National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China

3 Peony International Institute, Beijing Forestry University, Beijing 100083, China

4 School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China

 Highlights 
● Identification of three PrDA1 genes in Paeonia rockii.
● PrDA1-1 affects seed weight and number as a negative regulator of yield.
● PrTCP1/PrTCP9, which interact with PrDA1-1, increase seed weight and number as positive regulators of yield.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

牡丹是一种新兴木本油料作物,有助于满足日益增长的食用油和生物燃料需求。目前其推广的关键是提高种子产量。DA1基因参与种子重量和数量的调控,对作物产量改良的效果明显,但其在牡丹中的功能尚未报道。本研究首次在‘京红’紫斑牡丹全基因组中鉴定出三个PrDA1基因,其中PrDA1-1AtDA1的同源基因,包含UIM (ubiquitin-interacting motif)、LIM (Lin11, Isl- 1, and Mec-3)、DA-like三类保守结构域。PrDA1-1相对表达量在种子发育前期与后期较高,在拟南芥中组成性表达可减少种子数量、增加重量,但降低产量。PrDA1-1与PrTCP1&9在酵母和植物中均互作。在拟南芥中组成性表达PrTCP1&9增加了种子重量和数量、使产量提高。因此,我们鉴定出调控种子重量和数量的PrDA1-1 PrTCP1&9基因,为改良牡丹种子产量提供了新的基因资源。



Abstract  
Tree peony is an emerging woody oilseed crop that has the potential to help meet the growing demand for edible oil and biofuel, and breeding high-yield varieties is the key to increasing production.  The DA1 gene regulates seed weight and number and effectively improves crop yield, although its function in tree peonies has not yet been reported.  In this study, three PrDA1 genes were first identified in the whole genome of ‘Jing Hong’ flare tree peony (Paeonia rockii).  PrDA1-1 is homologous to AtDA1 and contains three types of conserved structural domains: UIM (ubiquitin-interacting motif), LIM (Lin11, Isl-1, and Mec-3), and DA-like.  PrDA1-1 was strongly expressed during both the early and late stages of seed development, and its constitutive expression in Arabidopsis reduced seed number but increased seed weight, which ultimately led to a reduction in yield.  PrDA1-1 was found to interact with PrTCP1/PrTCP9 in yeast and plants, and the constitutive expression of PrTCP1/PrTCP9 in Arabidopsis increased seed weight and number, which resulted in higher yield.  Since this study showed that PrDA1-1 and PrTCP1/PrTCP9 regulate seed weight and number to affect yield, these new genetic resources will help to improve the seed yield of tree peonies.
Keywords:  DA1       gene family        PrTCP1/PrTCP9        Paeonia rockii        seed traits  
Received: 08 October 2023   Accepted: 11 June 2024
Fund: 

This work was supported by the National Key Research and Development Program of China (2023YFD1200105), the National Natural Science Foundation of China (31972446), and the 5·5 Engineering Research & Innovation Team Project of Beijing Forestry University, China (BLRC2023A06).

About author:  Chunyan He, E-mail: hecyanw@163.com; #Correspondence Fangyun Cheng, E-mail: chengfy8@263.net

Cite this article: 

Chunyan He, Fangyun Cheng. 2025. PrDA1-1 and its interacting proteins PrTCP1/PrTCP9 in flare tree peony affect yield by regulating seed weight and number. Journal of Integrative Agriculture, 24(2): 610-622.

Almagro A J, Tsirigos K D, Sonderby C K, Petersen T N, Winther O, Brunak S, von Heijne G, Nielsen H. 2019. Signalp 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnology37, 420–423.

Bernhofer M, Goldberg T, Wolf S, Ahmed M, Zaugg J, Boden M, Rost B. 2018. NLSdb-major update for database of nuclear localization signals and nuclear export signals. Nucleic Acids Research46, 503–508.

Cheng F Y, Aoki N. 1999. Endosperm development and its relationship to embryo development in blotched tree peony (Paeonia rockii). Bulletin of the Faculty of Life and Environmental Science, Shimane University4, 7–11.

Disch S, Anastasiou E, Sharma V K, Laux T, Fletcher J C, Lenhard M. 2006. The E3 ubiquitin ligase BIG BROTHER controls Arabidopsis organ size in a dosage-dependent manner. Current Biology16, 272–279.

Dong H, Dumenil J, Lu F H, Na L, Vanhaeren H, Naumann C, Klecker M, Prior R, Smith C, Mckenzie N, Saalbach G, Chen L, Xia T, Gonzalez N, Seguela M, Inze D, Dissmeyer N, Li Y, Bevan M W. 2017. Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatory proteins to limit cell proliferation in ArabidopsisGenes & Development31, 197–208.

Du L, Li N, Chen L L, Xu Y X, Li Y, Zhang Y Y, Li C Y, Li Y H. 2014. The ubiquitin receptor DA1 regulates seed and organ size by modulating the stability of the ubiquitin-specific protease UBP15/SOD2 in ArabidopsisPlant Cell26, 665–677.

Edgar R C. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research32, 1792–1797.

van Es S W, van der Auweraert E B, Silveira S R, Angenent G C, van Dijk A, Immink R. 2019. Comprehensive phenotyping reveals interactions and functions of Arabidopsis thaliana TCP genes in yield determination. Plant Journal99, 316–328.

Gao Q, Zhang N, Wang W Q, Shen S Y, Bai C, Song X J. 2021. The ubiquitin-interacting motif-type ubiquitin receptor HDR3 interacts with and stabilizes the histone acetyltransferase GW6a to control the grain size in rice. Plant Cell33, 3331–3347.

Gu B, Dong H, Smith C, Cui G, Li Y, Bevan M W. 2022. Modulation of receptor-like transmembrane kinase 1 nuclear localization by DA1 peptidases in ArabidopsisProceedings of the National Academy of Sciences of the United States of America119, e2089210177.

Guo X, He C Y, Cheng F Y, Zhong Y, Cheng X Y, Tao X W. 2021. Dissection of allelic variation underlying floral and fruit traits in flare tree peony (Paeonia rockii) using association mapping. Frontiers in Genetics12, 664814.

Han C J, Wang Q, Zhang H B, Wang S H, Song H D, Hao J M, Dong H Z. 2018. Light shading improves the yield and quality of seed in oil-seed peony (Paeonia ostii Feng Dan). Journal of Integrative Agriculture17, 1631–1640.

Han J G, Liu Z, Li X Q, Li J, Hu Y H. 2016. Diversity in seed oil content and fatty acid composition in three tree peony species with potential as sources of omega-3 fatty acids. Journal of Horticultural Science & Biotechnology91, 175–179.

Harris W S. 2012. Stearidonic acid-enhanced soybean oil: A plant-based source of (n-3) fatty acids for foods. Journal of Nutrition142, 600–604.

Hu B, Jin J, Guo A Y, Zhang H, Luo J, Gao G. 2015. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics31, 1296–1297.

Hu J, Wang Y X, Fang Y X, Zeng L J, Xu J, Yu H P, Shi Z Y, Pan J J, Zhang D, Kang S J, Zhu L, Dong G J, Guo L B, Zeng D L, Zhang G H, Xie L H, Xiong G S, Li J Y, Qian Q. 2015. A rare allele of GS2 enhances grain size and grain yield in rice. Molecular Plant8, 1455–1465.

Hu Z, Lu S J, Wang M J, He H, Sun L, Wang H, Liu X H, Jiang L, Sun J L, Xin X, Kong W, Chu C, Xue H W, Yang J, Luo X, Liu J X. 2018. A Novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice. Molecular Plant11, 736–749.

Huo X, Wu S, Zhu Z F, Liu F X, Fu Y C, Cai H W, Sun X Y, Gu P, Xie D X, Tan L B, Sun C Q. 2017. NOG1 increases grain production in rice. Nature Communications8, 1497.

Konuskan D B, Arslan M, Oksuz A. 2019. Physicochemical properties of cold pressed sunflower, peanut, rapeseed, mustard and olive oils grown in the Eastern Mediterranean region. Saudi Journal of Biological Sciences26, 340–344.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution35, 1547–1549.

Khan S U, Ali A, Saeed S, Fan Y, Shehazd A, Gul H, Fahad S, Lu K. 2024. Ovule number a rising star to regulate seed yield: Hopes or hypes. Journal of Integrative Agriculture23, 3623–3640.

Li C Q, Hu L Z, Wang X Q, Liu H Z, Tian H H, Wang J S. 2019. Selection of reliable reference genes for gene expression analysis in seeds at different developmental stages and across various tissues in Paeonia ostiiMolecular Biology Reports46, 6003–6011.

Li Q, Li L, Yang X H, Warburton M L, Bai G H, Dai J R, Li J S, Yan J B. 2010. Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biology10, 143.

Li S S, Yuan R Y, Chen L G, Wang L S, Hao X H, Wang L J, Zheng X C, Du H. 2015. Systematic qualitative and quantitative assessment of fatty acids in the seeds of 60 tree peony (Paeonia section moutan DC.) cultivars by GC-MS. Food Chemistry173, 133–140.

Li Y, Zheng L, Corke F, Smith C, Bevan M W. 2008. Control of final seed and organ size by the DA1 gene family in Arabidopsis thalianaGenes & Development22, 1331–1336.

Liu C, Ma T, Yuan D, Zhou Y, Long Y, Li Z, Dong Z, Duan M, Yu D, Jing Y, Bai X, Wang Y, Hou Q, Liu S, Zhang J S, Chen S Y, Li D, Liu X, Li Z, Wang W, et al. 2022. The OsEIIL1–OsERF115-target gene regulatory module controls grain size and weight in rice. Plant Biotechnology Journal20, 1470–1486.

Liu H, Li H, Hao C, Wang K, Wang Y, Qin L, An D, Li T, Zhang X. 2020. TaDA1, a conserved negative regulator of kernel size, has an additive effect with TaGW2 in common wheat (Triticum aestivum L.). Plant Biotechnology Journal18, 1330–1342.

Liu N, Cheng F Y. 2020. Association mapping for yield traits in Paeonia rockii based on SSR markers within transcription factors of comparative transcriptome. BMC Plant Biology20, 245.

Liu N, Cheng F, Guo X, Zhong Y. 2021. Development and application of microsatellite markers within transcription factors in flare tree peony (Paeonia rockii) based on next-generation and single-molecule long-read RNA-seq. Journal of Integrative Agriculture20, 1832–1848.

Lu C, Napier J A, Clemente T E, Cahoon E B. 2011. New frontiers in oilseed biotechnology: Meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Current Opinion in Biotechnology22, 252–259.

Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar G A, Sonnhammer E, Tosatto S, Paladin L, Raj S, Richardson L J, Finn R D, Bateman A. 2021. Pfam: The protein families database in 2021. Nucleic Acids Research49, 412–419.

Nguyen B A, Pogoutse A, Provart N, Moses A M. 2009. NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction. BMC Bioinformatics10, 202.

Peng Y, Chen L, Lu Y, Wu Y, Dumenil J, Zhu Z, Bevan M W, Li Y. 2015. The ubiquitin receptors DA1, DAR1, and DAR2 redundantly regulate endoreduplication by modulating the stability of TCP14/15 in ArabidopsisPlant Cell27, 649–662.

Potter S C, Luciani A, Eddy S R, Park Y, Lopez R, Finn R D. 2018. HMMER web server: 2018 update. Nucleic Acids Research46, 200–204.

Prasad P, Anjali P, Sreedhar R V. 2021. Plant-based stearidonic acid as sustainable source of omega-3 fatty acid with functional outcomes on human health. Critical Reviews in Food Science and Nutrition61, 1725–1737.

Shi C, Ren Y, Liu L, Wang F, Zhang H, Tian P, Pan T, Wang Y, Jing R, Liu T, Wu F, Lin Q, Lei C, Zhang X, Zhu S, Guo X, Wang J, Zhao Z, Wang J, Zhai H, et al. 2019. Ubiquitin specific protease 15 has an important role in regulating grain width and size in rice. Plant Physiology180, 381–391.

Shim K C, Luong N H, Tai T H, Lee G R, Ahn S N, Park I. 2024. T-DNA insertion mutants of Arabidopsis DA1 orthologous genes displayed altered plant height and yield-related traits in rice (Osativa L.). Genes Genomics46, 451–459.

Su Z Q, Hao C Y, Wang L F, Dong Y C, Zhang X Y. 2011. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics122, 211–223.

Tang X, Wang C, Chai G, Wang D, Xu H, Liu Y, He G, Liu S, Zhang Y, Kong Y, Li S, Lu M, Sederoff R R, Li Q, Zhou G. 2022. Ubiquitinated DA1 negatively regulates vascular cambium activity through modulating the stability of WOX4 in PopulusPlant Cell34, 3364–3382.

Viola I L, Alem A L, Jure R M, Gonzalez D H. 2023. Physiological roles and mechanisms of action of class I TCP transcription factors. International Journal of Molecular Sciences24, 5437.

Viola I L, Gonzalez D H. 2023. TCP transcription factors in plant reproductive development: Juggling multiple roles. Biomolecules13, 750.

Wang J L, Tang M Q, Chen S, Zheng X F, Mo H X, Li S J, Wang Z, Zhu K M, Ding L N, Liu S Y, Li Y H, Tan X L. 2017. Down-regulation of BnDA1, whose gene locus is associated with the seeds weight, improves the seeds weight and organ size in Brassica napusPlant Biotechnology Journal15, 1024–1033.

Wang X, Liang H, Guo D, Guo L, Duan X, Jia Q, Hou X. 2019. Integrated analysis of transcriptomic and proteomic data from tree peony (Postii) seeds reveals key developmental stages and candidate genes related to oil biosynthesis and fatty acid metabolism. Horticulture Research6, 111.

Wei X B, Xue J Q, Wang S L, Xue Y Q, Lin H, Shao X F, Xu D H, Zhang X X. 2018. Fatty acid analysis in the seeds of 50 Paeonia ostii individuals from the same population. Journal of Integrative Agriculture17, 1758–1767.

Xia T, Li N, Dumenil J, Li J, Kamenski A, Bevan M W, Gao F, Li Y H. 2013. The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in ArabidopsisPlant Cell25, 3347–3359.

Xie G, Li Z, Ran Q, Wang H, Zhang J. 2018. Over-expression of mutated ZmDA1 or ZmDAR1 gene improves maize kernel yield by enhancing starch synthesis. Plant Biotechnology Journal16, 234–244.

Zhang H, Flottmann S. 2018. Source-sink manipulations indicate seed yield in canola is limited by source availability. European Journal of Agronomy96, 70–76.

Zhang X, Henriques R, Lin S S, Niu Q W, Chua N H. 2006. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols1, 641–646.

Zhao M, Gu Y Z, He L L, Chen Q S, He C Y. 2015. Sequence and expression variations suggest an adaptive role for the DA1-like gene family in the evolution of soybeans. BMC Plant Biology15, 120.

Zhao M, He L, Gu Y, Wang Y, Chen Q, He C. 2014. Genome-wide analyses of a plant-specific LIM-domain gene family implicate its evolutionary role in plant diversification. Genome Biology and Evolution6, 1000–1012.

[1] Hongchen Jia, Youwei Du, Yuanyuan Liu, Shuanghong Wang, Yan Wang, Sadia Noorin, Mark L. Gleason, Rong Zhang, Guangyu Sun. Transcriptional activation of MdDEF30 by MdWRKY75 enhances apple resistance to Cytospora canker [J]. >Journal of Integrative Agriculture, 2025, 24(3): 1108-1125.
No Suggested Reading articles found!