Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (3): 1198-1211    DOI: 10.1016/j.jia.2024.07.024
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Rabies virus-based oral and inactivated vaccines protect minks against SARS-CoV-2 infection and transmission

Hong Huo1, 2*, Shuang Xiao1*, Jinming Wang1*, Xijun Wang1, Jinying Ge1, Gongxun Zhong1, 2, Zhiyuan Wen1, 2, Chong Wang1, 2, Jinliang Wang1, 2, Han Wang1, Xijun He2, Lei Shuai1, 2#, Zhigao Bu1, 2, 3#

1 State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China

2 National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin 150069, China

3 Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China

 Highlights 
Recombinant rabies virus expressing the prefusion-stabilized SARS-CoV-2 spike protein as an oral or inactivated vaccine induced strong humoral immune responses against SARS-CoV-2 strains in mice and minks.
rERAG333E-S6P completely protected mice and minks against SARS-CoV-2 infection.
rERAG333E-S6P can largely protect minks against wild-type SARS-CoV-2 transmission via respiratory droplets.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

新型冠状病毒感染(COVID-19)是一种由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起的人兽共患病,对人类健康和公共卫生安全造成极大的影响。SARS-CoV-2易感动物范围广泛,其中水貂对SARS-CoV-2高度敏感,并可将SARS-CoV-2传播给人类。动物COVID-19疫苗的研发和应用是降低和阻断动物SARS-CoV-2感染和传播的有效手段。对于水貂和野生动物的新冠感染防控,口服免疫是预防SARS-CoV-2感染和传播的有效策略之一。

本研究以SARS-CoV-2原始株(WT)、德尔塔株(Delta)和奥密克戎BA.2(BA.2)株刺突蛋白(S)基因为靶基因,分别进行预融合、结构稳定等方面分子修饰,并人工合成可表达S6P、DS6P、BA2S6P蛋白的S基因。将合成的基因插入狂犬病病毒株(rabies virus, RABV)rERAG333E的P和M基因之间,构建重组RABV病毒rERAG333E/S6P、rERAG333E/DS6P、rERAG333E/BA2S6P。重组病毒体外感染试验结果显示,S6P、DS6P、BA2S6P均可稳定、高效表达预融合的S6P、DS6P、BA2S6P蛋白,并且不影响重组病毒的体外生长性状。重组RABVs作为口服疫苗分别单独或联合免疫BALB/c小鼠,体重变化与载体疫苗免疫组相比无显著差异,并能诱导产生高水平的SARS-CoV-2中和抗体、WT/Delta/BA.2交叉中和抗体反应、唾液sIgA反应及RABV中和抗体反应;作为肌注式灭活疫苗单独或联合免疫BALB/c小鼠,同样显示出优秀的安全性和免疫原性。此外,rERAG333E/S6P作为口服、肌注式灭活疫苗均可有效阻止SARS-CoV-2在BALB/c小鼠上、下呼吸道的复制。

为评估重组RABVs作为新冠易感动物新冠疫苗的潜力,本研究将重组RABVs作为口服疫苗或肌注式灭活疫苗单独或联合免疫水貂,监测期内水貂均健活,且具有良好的免疫原性,联合免疫可诱导高效的SARS-CoV-2 WT/Delta/Omicron BA.2株交叉中和抗体反应及RABV中和抗体反应。水貂攻毒保护和传播阻断试验结果显示,rERAG333E/S6P作为口服、肌注式灭活疫苗在水貂上均具有良好的SARS-CoV-2 WT株攻毒保护和传播阻断效果,可有效降低SARS-CoV-2对水貂的感染、肺脏损伤和传播。

本研究结果表明,表达SARS-CoV-2修饰S蛋白的重组RABVs可作为口服疫苗候选株应用于水貂、流浪动物、野生动物等,作为肌注式灭活疫苗候选株应用于伴侣动物;联合免疫的免疫策略有潜力成为抵抗多种SARS-CoV-2流行株的动物用COVID-19多价疫苗;借助RABV灭活疫苗的成熟生产工艺,有潜力作为人用COVID-19和狂犬病二联候选疫苗株。



Abstract  
Minks are highly susceptible to SARS-CoV-2, and have transmitted SARS-CoV-2 to humans.  Oral immunization is one of the most promising strategies to prevent SARS-CoV-2 infection and transmission in minks.  Here, we generated 3 recombinant rabies viruses (RABV), rERAG333E/S6P, rERAG333E/DS6P and rERAG333E/BA2S6P, expressing the prefusion-stabilized SARS-CoV-2 spike protein of wild-type (S6P), δ (DS6P) or BA.2 (BA2S6P) strain based on an oral rabies vaccine candidate (rERAG333E).  Oral or inactivated immunization of the 3 RABVs monovalent or trivalent were safe, and induced robust RABV neutralizing antibody and cross-antibody responses against the three SARS-CoV-2 in mice and minks.  The challenge tests showed that 2 doses of rERAG333E-S6P as an oral or inactivated vaccine completely protected mice against mouse-adapted SARS-CoV-2 infection in the upper and lower respiratory tracts, and largely prevented viral replication and lung damage caused by wild-type SARS-CoV-2 infection in minks.  Notably, we also confirmed that 2 doses of rERAG333E-S6P as an oral or inactivated vaccine can largely protect minks against wild-type SARS-CoV-2 transmission via respiratory droplets.  Our findings suggest that rERAG333E-based COVID-19 vaccines appear to be suitable oral candidates to protect minks from SARS-CoV-2 infection and transmission, and may serve as inactivated vaccines for further investigation in humans.


Keywords:  SARS-CoV-2        rabies virus        oral vaccine        inactivated vaccine        mink  
Received: 20 February 2024   Accepted: 28 May 2024
Fund: 
This study was supported by the National Key Research and Development Program of China (2021YFC2301700), and the Natural Science Foundation of Heilongjiang Province, China (YQ2022C040).
About author:  #Correspondence Zhigao Bu, E-mail: buzhigao@caas.cn; Lei Shuai, E-mail: shuailei@caas.cn * These authors contributed equally to this work.

Cite this article: 

Hong Huo, Shuang Xiao, Jinming Wang, Xijun Wang, Jinying Ge, Gongxun Zhong, Zhiyuan Wen, Chong Wang, Jinliang Wang, Han Wang, Xijun He, Lei Shuai, Zhigao Bu. 2025. Rabies virus-based oral and inactivated vaccines protect minks against SARS-CoV-2 infection and transmission. Journal of Integrative Agriculture, 24(3): 1198-1211.

Almeida M F, Martorelli L F A, Aires C C, Barros R F, Massad E. 2008. Vaccinating the vampire bat against rabies. Virus Research137, 275–277.

Brunker K, Mollentze N. 2018. Rabies Virus. Trends in Microbiology, 26, 886–887.

Chi W Y, Li Y D, Huang H C, Chan T E H, Chow S Y, Su J H, Ferrall L, Hung C F, Wu T C. 2022. COVID-19 vaccine update: vaccine effectiveness, SARS-CoV-2 variants, boosters, adverse effects, and immune correlates of protection. Journal of Biomedical Science, 29, 1.

Cliquet F, Aubert M, Sagné L. 1998. Development of a fluorescent antibody virus neutralisation test (FAVN test) for the quantitation of rabies-neutralising antibody. Journal of Immunological Methods, 212, 79–87.

Cui S J, Liu Y M, Zhao J C, Peng X M, Lu G L, Shi W X, Pan Y, Zhang D T, Yang P, Wang Q Y. 2022. An updated review on SARS-CoV-2 infection in animals. Viruses-Basel, 14, 1527.

Ge J, Wen Z, Wang X, Hu S E N, Liu Y, Kong X, Chen H, Bu Z. 2006. Generating vesicular stomatitis virus pseudotype bearing the severe acute respiratory syndrome coronavirus spike envelope glycoprotein for rapid and safe neutralization test or cell-entry assay. Annals of the New York Academy of Sciences, 1081, 246–248.

Hansen L G, Larsen L E, Rasmussen T B, Miar Y, Lassuniére R, Jørgensen C S, Ryt-Hansen P. 2023. Investigation of the SARS-CoV-2 post-vaccination antibody response in Canadian farmed mink. Vaccine, 41, 7387–7394.

Henderson R, Edwards R J, Mansouri K, Janowska K, Stalls V, Gobeil S M C, Kopp M, Li D, Parks R, Hsu A L, Borgnia M J, Haynes B F, Acharya P. 2020. Controlling the SARS-CoV-2 spike glycoprotein conformation. Nature Structural & Molecular Biology27, 925–933.

Hoffmann M, Kleine-Weber H, Pöhlmann S. 2020. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Molecular Cell, 78, 779–784.

Hsieh C-L, Goldsmith J A, Schaub J M, DiVenere A M, Kuo H-C, Javanmardi K, Le K C, Wrapp D, Lee A G, Liu Y, Chou C-W, Byrne P O, Hjorth C K, Johnson N V, Ludes-Meyers J, Nguyen A W, Park J, Wang N, Amengor D, Lavinder J J, et al. 2020. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science, 369, 1501–1505.

Islam A, Ferdous J, Islam S, Abu Sayeed M, Rahman M K, Saha O, Hassan M M, Shirin T. 2022. Transmission dynamics and susceptibility patterns of SARS-CoV-2 in domestic, farmed and wild animals: sustainable one health surveillance for conservation and public health to prevent future epidemics and pandemics. Transboundary and Emerging Diseases, 69, 2523–2543.

Liu L H, Iketani S, Guo Y C, Chan J F W, Wang M, Liu L Y, Luo Y, Chu H, Huang Y M, Nair M S, Yu J, Chik K K H, Yuen T T T, Yoon C, To K K W, Chen H L, Yin M T, Sobieszczyk M E, Huang Y X, Wang H H, et al. 2022. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature, 602, 676–681.

Munnink B B O, Sikkema R S, Nieuwenhuijse D F, Molenaar R J, Munger E, Molenkamp R, van der Spek A, Tolsma P, Rietveld A, Brouwer M, Bouwmeester-Vincken N, Harders F, Hakze-van der Honing R, Wegdam-Blans M C A, Bouwstra R J, GeurtsvanKessel C, van der Eijk A A, Velkers F C, Smit L A M, Stegeman A, et al. 2021. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science, 371, 172–177.

Nooruzzaman M, Diel D G. 2023. Infection dynamics, pathogenesis, and immunity to SARS-CoV-2 in naturally susceptible animal species. The Journal of Immunology, 211, 1195–1201.

Pastoret P P, Brochier B. 1991. Biological control of wild animal infections. Current Opinion in Biotechnology, 2, 465–469.

Ramirez J E V, Sharpe L A, Peppas N A. 2017. Current state and challenges in developing oral vaccines. Advanced Drug Delivery Reviews, 114, 116–131.

Shi J Z, Wen Z Y, Zhong G X, Yang H L, Wang C, Huang B Y, Liu R Q, He X J, Shuai L, Sun Z R, Zhao Y B, Liu P P, Liang L B, Cui P F, Wang J L, Zhang X F, Guan Y T, Tan W J, Wu G Z, Chen H L, et al. 2020. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science, 368, 1016–1020.

Shuai L, Feng N, Wang X J, Ge J Y, Wen Z Y, Chen W Y, Qin L D, Xia X Z, Bu Z G. 2015. Genetically modified rabies virus ERA strain is safe and induces long-lasting protective immune response in dogs after oral vaccination. Antiviral Research, 121, 9–15.

Shuai L, Ge J Y, Wen Z Y, Wang J L, Wang X J, Bu Z G. 2020. Immune responses in mice and pigs after oral vaccination with rabies virus vectored Nipah disease vaccines. Veterinary Microbiology, 241, 108549.

Shuai L, Wang X J, Wen Z Y, Ge J Y, Wang J L, Zhao D D, Bu Z G. 2017. Genetically modified rabies virus-vectored Ebola virus disease vaccines are safe and induce efficacious immune responses in mice and dogs. Antiviral Research, 146, 36–44.

Shuai L, Zhong G X, Yuan Q, Wen Z Y, Wang C, He X J, Liu R Q, Wang J L, Zhao Q J, Liu Y X, Huo N N, Deng J H, Bai J J, Wu H C, Guan Y T, Shi J Z, Tian K G, Xia N S, Chen H L, Bu Z G. 2021. Replication, pathogenicity, and transmission of SARS-CoV-2 in minks. National Science Review, 8, doi: 10.1093/nsr/nwaa291.

Tao L H, Ge J Y, Wang X J, Zhai H Y, Hua T, Zhao B L, Kong D N, Yang C L, Chen H L, Bu Z G. 2010. Molecular basis of neurovirulence of flury rabies virus vaccine strains: importance of the polymerase and the glycoprotein R333Q mutation. Journal of Virology, 84, 8926–8936.

Wang J L, Shuai L, Wang C, Liu R Q, He X J, Zhang X F, Sun Z R, Shan D, Ge J Y, Wang X J, Hua R H, Zhong G X, Wen Z Y, Bu Z G. 2020. Mouse-adapted SARS-CoV-2 replicates efficiently in the upper and lower respiratory tract of BALB/c and C57BL/6J mice. Protein & Cell, 11, 776–782.

Wang S Y, Sun J F, Liu P, Luo L, Li J X, Zhu F C, Shen X X, Meng F Y. 2022. Immunogenicity and safety of human diploid cell vaccine (HDCV) vs. purified Vero cell vaccine (PVRV) vs. purified chick embryo cell vaccine (PCECV) used in post-exposure prophylaxis: a systematic review and meta-analysis. Human Vaccines & Immunotherapeutics, 18, 2027714.

WHO. 2023. Coronavirus disease (COVID-19) situation dashboard [2023-12-20]. https://covid19.who.int/WHO-COVID-19-global-data

Wrapp D, Wang N, Corbett K S, Goldsmith J A, Hsieh C-L, Abiona O, Graham B S, McLellan J S. 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367, 1260–1263.

Wu S P, Zhong G X, Zhang J, Shuai L, Zhang Z, Wen Z Y, Wang B S, Zhao Z H, Song X H, Chen Y, Liu R Q, Fu L, Zhang J L, Guo Q, Wang C, Yang Y L, Fang T, Lv P, Wang J L, Xu J J, et al. 2020. A single dose of an adenovirus-vectored vaccine provides protection against SARS-CoV-2 challenge. Nature Communications, 11, 4081.

Zhang H L, Jin H L, Yan F H, Song Y M, Dai J X, Jiao C C, Bai Y J, Sun J X, Liu D, Wang S, Zhang M Y, Lu J L, Huang J B, Huang P, Li Y Y, Xia X Z, Wang H L. 2023a. An inactivated recombinant rabies virus chimerically expressed RBD induces humoral and cellular immunity against SARS-CoV-2 and RABV. Virologica Sinica, 38, 244–256.

Zhang Q, Zhang H J, Gao J D, Huang K, Yang Y, Hui X F, He X L, Li C F, Gong W X, Zhang Y F, Zhao Y, Peng C, Gao X X, Chen H C, Zou Z, Shi Z L, Jin M L. 2020. A serological survey of SARS-CoV-2 in cat in Wuhan. Emerging Microbes & Infections, 9, 2013–2019.

Zhang Y F, Kang X R, Liu S, Han P, Lei W W, Xu K, Xu Z P, Gao Z R, Zhou X M, An Y L, Han Y X, Liu K F, Zhao X, Dai L P, Wang P Y, Wu G Z, Qi J X, Xu K, Gao G F. 2023b. Broad protective RBD heterotrimer vaccines neutralize SARS-CoV-2 including Omicron sub-variants XBB/BQ.1.1/BF.7. PLoS Pathogens, 19, e1011659.

Zhou P, Yang X L, Wang X G, Hu B, Zhang L, Zhang W, Si H R, Zhu Y, Li B, Huang C L, Chen H D, Chen J, Luo Y, Guo H, Jiang R D, Liu M Q, Chen Y, Shen X R, Wang X, Zheng X S, et al. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579, 270–273.

Zhou Y B, Zhi H L, Teng Y. 2023. The outbreak of SARS-CoV-2 Omicron lineages, immune escape, and vaccine effectivity. Journal of Medical Virology, 95, e28138.

Zhu N, Zhang D Y, Wang W L, Li X W, Yang B, Song J D, Zhao X, Huang B Y, Shi W F, Lu R J, Niu P H, Zhan F X, Ma X J, Wang D Y, Xu W B, Wu G Z, Gao G G F, Tan W J, Coronavirus C N. 2020. A Novel Coronavirus from patients with Pneumonia in China, 2019. New England Journal of Medicine, 382, 727–733.

No related articles found!
No Suggested Reading articles found!