Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (6): 2311-2326    DOI: 10.1016/j.jia.2024.07.021
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Development of a piggyBac transgenic system in Bactrocera dorsalis and its potential for research on olfactory molecular targets

Jie Zhang1*, Qi Wang1*, Jinxi Yuan2, Zhen Tian1, Shanchun Yan1#, Wei Liu2#

1 School of Forestry/Key Laboratory of Sustainable Forest Ecosystem Management of Ministry of Education, Northeast Forestry University, Harbin 150040, China

2 Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture/Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China

 Highlights 
A stable transgenic system based on piggyBac was developed in Bactrocera dorsalis.
The transgenic system can drive the expression of reporter genes in the olfactory organs of B. dorsalis while maintaining normal antennal electrophysiological responses.
The transgenic system significantly affects certain olfactory-related behaviors.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

害虫行为调控剂旨在通过影响害虫的行为来减少对农作物的伤害,其中参与嗅觉行为的功能基因是研发害虫行为调控剂的关键分子靶标。在橘小实蝇Bactrocera dorsalis中,当前此方面的基因编辑研究主要依靠CRISPR/Cas9介导的敲除技术,这在致死基因的研究上受到了限制。转基因技术能够在特定组织或时期精确操控基因,解决了此局限。因此,本研究通过piggyBac介导的随机插入技术,构建了橘小实蝇的转基因操作系统,并测试了报告基因在嗅觉器官表达的模式,以及其对嗅觉行为和电生理表型的影响,以评估该系统在未来嗅觉基因功能研究中的应用潜力。首先,我们通过发育时期转录组鉴定到了在各时期广泛表达的管家基因BdorActinA3a-1,随后将此基因的候选启动子区域BdorActinA3a-1P-2k克隆至piggyBac转基因质粒上,并以此构建获得两个稳定遗传的转基因品系,转基因片段分别插入到4号和5号染色体上。转基因系的生存能力基本正常,插入元件不影响品系的孵化率和成虫生长曲线,但降低了羽化率和产卵量。在表达模式上,报告基因有效在触角,口器,下颚须,足,外生殖器以及脑部的驱动表达。转基因品系对重要化合物的触角电位反应与野生型一致。但一些与嗅觉相关的行为受到了显著影响对性信息素2,3,5-三甲基吡嗪2,3,5-trimethylpyrazine,TMP)的反应和交配行为。这些结果说明该系统在未来可用于嗅觉基因功能的研究,例如在嗅觉组织中驱动一些嗅觉功能研究常用的元件表达。但应用时应注意它对一些嗅觉表型的影响。



Abstract  

Chemicals that modify pest behavior are developed to reduce crop damage by altering pest behavior, using specific genes within the olfactory system as molecular targets. The identification of these molecular targets in Bactrocera dorsalis, also known as the functional study of key olfactory genes, relies on CRISPR/Cas9-mediated gene knockout techniques.  However, these techniques face limitations when applied to lethal genes.  Transgenic technology offers a solution since it enables precise manipulation of gene expression in specific tissues or during certain developmental stages.  Consequently, this study developed a piggyBac-mediated transgenic system in Bdorsalis to investigate reporter gene expression in olfactory organs, and assessed the olfactory behavior and antennal electrophysiological responses in transgenic lines.  The goal was to assess the potential of this approach for future research on olfactory gene function.  A universally expressed housekeeping gene from the BdorActin family was identified using the developmental transcriptome dataset.  Its candidate promoter region (BdorActinA3a-1P–2k) was then cloned into the piggyBac plasmid.  We subsequently established two stable transgenic lines with specific TTAA insertion sites on chromosomes 4 and 5, consistent with the characteristics of piggyBac transposition.  The transgenic strains exhibited essentially normal survival, with hatchability and adult lifespan unaffected, although there were slight reductions in the emergence rate and oviposition capacity.  The fluorescent reporter has been successfully expressed in olfactory-related organs, such as the antennae, proboscis, maxillary palp, legs, external genitalia, and brain.  The antennal electrophysiological responses to representative chemicals in the transgenic lines were consistent with those of the wild type.  However, some olfactory-related behaviors, such as pheromone response and mating, were significantly affected in the transgenic lines.  These findings suggest that our system could potentially be applied in future olfactory research, such as driving the expression of exogenous elements that are effective in olfactory organs.  However, caution is advised regarding its impact when applied to some olfactory-related behavioral phenotypes.


Keywords:  olfactory       transgenic        piggyBac        Bactrocera dorsalis  
Received: 07 May 2024   Online: 18 July 2024   Accepted: 13 June 2024
Fund: We are thankful for the support from the Shenzhen Science and Technology Program, China (KQTD2018041 1143628272), the special funds for Science Technology Innovation and Industrial Development of Shenzhen Dapeng New District, China (PT202101-02), and the National Key Research and Development Program of China (2022YFD1700201).
About author:  Jie Zhang, E-mail: jiezhang666@foxmail.com; Qi Wang, E-mail: qwang218@163.com; #Correspondence Shanchun Yan, E-mail: yanshanchun@126.com; Wei Liu, E-mail: liuwei11@caas.cn * These authors contributed equally to this study.

Cite this article: 

Jie Zhang, Qi Wang, Jinxi Yuan, Zhen Tian, Shanchun Yan, Wei Liu. 2025.

Development of a piggyBac transgenic system in Bactrocera dorsalis and its potential for research on olfactory molecular targets
. Journal of Integrative Agriculture, 24(6): 2311-2326.

Allwood A J, Vueti E T, Leblanc L, Bull R. 2003. Eradication of introduced Bactrocera species (Diptera: Tephritidae) in Nauru using male annihilation and protein bait application techniques. In: Veitch C R, Clout M N, eds., Turning the TideThe Eradication of Invasive Species. Hollands Printing Press, Aukland. pp. 19–25.

Basrur N S, De Obaldia M E, Morita T, Herre M, von Heynitz R K, Tsitohay Y N, Vosshall L B. 2020. Fruitless mutant male mosquitoes gain attraction to human odor. Elife9, e63982.

Bolger A M, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England), 30, 2114–2120.

Bui M, Shyong J, Lutz E K, Yang T, Li M, Truong K, Arvidson R, Buchman A, Riffell J A, Akbari O S. 2019. Live calcium imaging of Aedes aegypti neuronal tissues reveals differential importance of chemosensory systems for life-history-specific foraging strategies. BMC Neuroscience20, 27.

Chen T W, Wardill T J, Sun Y, Pulver S R, Renninger S L, Baohan A, Schreiter E R, Kerr R A, Orger M B, Jayaraman V, Looger L L, Svoboda K, Kim D S. 2013. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature499, 295–300.

Chen X E, Palli S R. 2021. Hyperactive piggyBac transposase-mediated germline transformation in the fall armyworm, Spodoptera frugiperdaJove-Journal of Visualized Experiments175, e62714.

Chen X F, Lei Y B, Li H F, Xu L, Yang H, Wang J J, Jiang H B. 2021. CRISPR/Cas9 mutagenesis abolishes odorant-binding protein BdorOBP56f-2 and impairs the perception of methyl eugenol in Bactrocera dorsalis (Hendel). Insect Biochemistry and Molecular Biology139, 103656.

Christenson L D, Foote R H. 1960. Biology of fruit flies. Annual Review of Entomology5, 171−192.

Dai S M, Huang C Y, Chang C. 2021. Introduction of a cold sensitivity-conferring mutation into the RTA-Bddsx hybrid system of Bactrocera dorsalis for establishment of a thermally controllable homozygous line. Pest Management Science77, 3547−3553.

Datta S R, Vasconcelos M L, Ruta V, Luo S, Wong A, Demir E, Flores J, Balonze K, Dickson B J, Axel R. 2008. The Drosophila pheromone cVA activates a sexually dimorphic neural circuit. Nature452, 473−477.

Davydova S, Liu J, Kandul N P, Braswell W E, Akbari O S, Meccariello A. 2023. Next-generation genetic sexing strain establishment in the agricultural pest Ceratitis capitataScientific Reports13, 19866.

Drazic A, Aksnes H, Marie M, Boczkowska M, Varland S, Timmerman E, Foyn H, Glomnes N, Rebowski G, Impens F, Gevaert K, Dominguez R, Arnesen T. 2018. NAA80 is actin’s N-terminal acetyltransferase and regulates cytoskeleton assembly and cell motility. Proceedings of the National Academy of Sciences of the United States of America115, 4399–4404.

Dweck H K, Ebrahim A, Thoma M, Mohamed A, Keesey W, Trona F, Lavista-Llanos S, Svatoš A, Sachse S, Knaden M, Hansson S. 2015. Pheromones mediating copulation and attraction in DrosophilaProceedings of the National Academy of Sciences of the United States of America112, E2829−E2835.

Genç H, Schetelig M F, Nirmala X, Handler A M. 2016. Germline transformation of the olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae) with a piggyBac transposon vector. Turkish Journal of Biology40, 845−855.

Haas B J, Papanicolaou A, Yassour M, Grabherr M, Blood P D, Bowden J, Couger M B, Eccles D, Li B, Lieber M, MacManes M D, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey C N, Henschel R, et al. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols8, 1494–1512.

Handler A M. 2002. Use of the piggyBac transposon for germ-line transformation of insects. Insect Biochemistry and Molecular Biology32, 1211−1220.

Handler A M, McCombs S D. 2000. The piggyBac transposon mediates germ-line transformation in the Oriental fruit fly and closely related elements exist in its genome. Insect Molecular Biology9, 605−612.

Hightower R C, Meagher R B. 1986. The molecular evolution of actin. Genetics,114, 315–322.

Horigane M, Ogihara K, Nakajima Y, Honda H, Taylor D. 2007. Identification and expression analysis of an actin gene from the soft tick, Ornithodoros moubata (Acari: Argasidae). Archives of Insect Biochemistry and Physiology64, 186–199.

Horn C, Schmid B G, Pogoda F S, Wimmer E A. 2002. Fluorescent transformation markers for insect transgenesis. Insect Biochemistry and Molecular Biology32, 1221–1235.

Hu K. 2021. Become competent in generating RNA-Seq heat maps in one day for novices without prior R experience. In: Hu K, ed., Nuclear ReprogrammingMethods in Molecular Biology. Humana, NY. pp. 269–303.

Huang C Y, Dai S M, Chang C. 2016. Introduction of the RTA-Bddsx gene induces female-specific lethal effects in transformed Bactrocera dorsalis (Hendel). Pest Management Science72, 1160−1167.

Huang L, Ledochowitsch P, Knoblich U, Lecoq J, Murphy G J, Reid R C, de Vries S E, Koch C, Zeng H, Buice M A, Waters J, Li L. 2021. Relationship between simultaneously recorded spiking activity and fluorescence signal in GCaMP6 transgenic mice. Elife10, e51675.

Kandul N P, Liu J, Sanchez C H M, Wu S L, Marshall J M, Akbari O S. 2019. Transforming insect population control with precision guided sterile males with demonstration in flies. Nature Communications10, 84.

Katoh K, Standley D M. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution30, 772–780.

Kent W J. 2002. BLAT - the BLAST-like alignment tool. Genome Research12, 656–664.

Kim D, Langmead B, Salzberg S L. 2015. HISAT: A fast spliced aligner with low memory requirements. Nature Methods12, 357–360.

Kimura K, Ote M, Tazawa T, Yamamoto D. 2005. Fruitless specifies sexually dimorphic neural circuitry in the Drosophila brain. Nature438, 229−233.

Klemenz R, Weber U, Gehring W J. 1987. The white gene as a marker in a new P-element vector for gene transfer in DrosophilaNucleic Acids Research15, 3947–3959.

Konopka J K, Task D, Poinapen D, Potter J. 2023. Neurogenetic identification of mosquito sensory neurons. iScience26,106690.

Li H, Durbin R. 2009. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics (Oxford, England), 25, 1754–1760.

Li H F, Huang X Y, Yang Y H, Chen X F, Yang Y, Wang J J, Jiang H B. 2022. The short neuropeptide F receptor regulates olfaction-mediated foraging behavior in the oriental fruit fly Bactrocera dorsalis (Hendel). Insect Biochemistry and Molecular Biology140, 103697.

Lu B, LaMora A, Sun Y, Welsh M J, Ben-Shahar Y. 2012. ppk23-Dependent chemosensory functions contribute to courtship behavior in Drosophila melanogasterPLoS Genetics8, e1002587.

Meccariello A, Hou S, Davydova S, Fawcett J D, Siddall A, Leftwich P T, Krsticevic F, Papathanos P A, Windbichler N. 2024. Gene drive and genetic sex conversion in the global agricultural pest Ceratitis capitataNature Communication15, 372.

Minh B Q, Schmidt H A, Chernomor O, Schrempf D, Woodhams M D, von Haeseler A, Lanfear R. 2020. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution37, 1530–1534.

Muñoz D, Jimenez A, Marinotti O, James A A. 2004. The AeAct-4 gene is expressed in the developing flight muscles of female Aedes aegyptiInsect Molecular Biology13, 563–568.

Ohshima S, Villarimo C, Gailey D A. 1997. Reassessment of 79B actin gene expression in the abdomen of adult Drosophila melanogasterInsect Molecular Biology6, 227–231.

Papapetrou E P, Schambach A. 2016. Gene insertion into genomic safe harbors for human gene therapy. Molecular Therapy24, 678–684.

Pertea M, Pertea G M, Antonescu C M, Chang T C, Mendell J T, Salzberg S L. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology33, 290–295.

Pollard T D, Cooper J A. 2009. Actin, a central player in cell shape and movement. Science326, 1208–1212.

Potter S C, Luciani A, Eddy S R, Park Y, Lopez R, Finn R D. 2018. HMMER web server: 2018 update. Nucleic Acids Research46, W200–W204.

Raji J I, Melo N, Castillo J S, Gonzalez S, Saldana V, Stensmyr M C, DeGennaro M. 2019. Aedes aegypti Mosquitoes detect acidic volatiles found in human odor using the IR8a pathway. Current Biology29, 1253–1262.e7.

Reisler E. 1993. Actin molecular structure and function. Current Opinion in Cell Biology5, 41–47.

Ren C, Zhang J, Yuan J X, Wu Y Q Q G, Yan S C, Liu W, Wang G R. 2023. Light intensity regulates the sexual behaviors of oriental fruit fly Bactrocera dorsalis under laboratory conditions. Journal of Integrative Agriculture22, 2772–2782.

Ren L, Ma Y G, Xie M X, Lu Y Y, Cheng D F. 2021. Rectal bacteria produce sex pheromones in the male oriental fruit fly. Current Biology31, 2220–2226.e4.

Riabinina O, Luginbuhl D, Marr E, Liu S, Wu M N, Luo L, Potter C J. 2015. Improved and expanded Q-system reagents for genetic manipulations. Nature Methods12, 219–222.

Riabinina O, Task D, Marr E, Lin C C, Alford R, O’Brochta D A, Potter C J. 2016. Organization of olfactory centres in the malaria mosquito Anopheles gambiaeNature Communications7, 13010.

Robinson J T, Thorvaldsdottir H, Turner D, Mesirov J P. 2023. igv.js: An embeddable JavaScript implementation of the Integrative Genomics Viewer (IGV). Bioinformatics (Oxford, England), 39, btac830.

Rubenstein P A. 1990. The functional importance of multiple actin isoforms. BioEssays12, 309–315.

Rubin G M, Spradling A C. 1983. Vectors for P element-mediated gene transfer in DrosophilaNucleic Acids Research11, 6341–6351.

Salazar C E, Hamm D M, Wesson D M, Beard C B, Kumar V, Collins F H. 1994. A cytoskeletal actin gene in the mosquito Anopheles gambiaeInsect Molecular Biology3, 1–13.

Sarango V M G, Ekbom B, Ooi P. 2009. Monitoring and pest control of fruit flies in Thailand: New knowledge for integrated pest management. Examensarbete15, 2−38.

Schetelig M F, Handler A M. 2013. Y-linked markers for improved population control of the tephritid fruit fly pest, Anastrepha suspensa. In: Vilcinskas A, ed., Yellow Biotechnology II. Advances in Biochemical Engineering/Biotechnology. Springer, Berlin, Heidelberg. pp. 123–133.

Schetelig M F, Scolari F, Handler A M, Kittelmann S, Gasperi G, Wimmer E A. 2009. Site-specific recombination for the modification of transgenic strains of the Mediterranean fruit fly Ceratitis capitataProceedings of the National Academy of Sciences of the United States of America106, 18171–18176.

Shelly T, Epsky N, Jang E B, Reyes-Flores J, Vargas R. 2014. Trapping and the Detection, Controland Regulation of Tephritid Fruit Flies. Springer Netherlands Press, Dordrecht.

Shelly T E, Kurashima R, Fezza T. 2021. Field capture of male oriental fruit flies (Diptera: Tephritidae) in traps baited with solid dispensers containing varying amounts of methyl eugenol. Florida Entomologist103, 516–518.

Smith M C, Till R, Brady K, Soultanas P, Thorpe H, Smith M C. 2004. Synapsis and DNA cleavage in ϕC31 integrase-mediated site-specific recombination. Nucleic Acids Research32, 2607–2617.

Smith P T, Kambhampati S, Armstrong K S. 2003. Phylogenetic relationships among Bactrocera species (Diptera: Tephritidae) inferred from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution26, 8–17.

Steinmetz N A, Buetfering C, Lecoq J, Lee C R, Peters A J, Jacobs E A K, Coen P, Ollerenshaw D R, Valley M T, de Vries S E J, Garrett M, Zhuang J, Groblewski P A, Manavi S, Miles J, White C, Lee E, Griffin F, Larkin J D, Roll K, et al. 2017. Aberrant cortical activity in multiple GCaMP6-expressing transgenic mouse lines. eNeuro4, doi: 10.1523/ENEURO.0207-17.2017.

Südhof T C. 2012. The presynaptic active zone. Neuron75, 11−25.

Task D, Lin C C, Vulpe A, Afify A, Ballou S, Brbic M, Schlegel P, Raji J, Jefferis G S X E, Li H, Menuz K, Potter C J. 2022. Chemoreceptor co-expression in Drosophila melanogaster olfactory neurons. eLife11, e72599.

Thangavel G, Hofstatter P G, Mercier R, Marques A. 2023. Tracing the evolution of the plant meiotic molecular machinery. Plant Reproduction36, 73−95.

Vargas R I, Souder S K, Nkomo E, Cook P J, Mackey B, Stark J D. 2015. Weathering and chemical degradation of methyl eugenol and raspberry ketone solid dispensers for detection, monitoring, and male annihilation of Bactrocera dorsalis and Bactrocera cucurbitae (Diptera: Tephritidae) in Hawaii. Journal of Economic Entomology108, 1612–1623.

Vulpe A, Kim H S, Ballou S, Wu S T, Grabe V, Nava Gonzales C, Liang T, Sachse S, Jeanne J M, Su C Y, Menuz K. 2021. An ammonium transporter is a non-canonical olfactory receptor for ammonia. Current Biology31, 3382–3390.e7.

Vyazunova I, Lan Q. 2004. Stage-specific expression of two actin genes in the yellow fever mosquito, Aedes aegyptiInsect Molecular Biology13, 241–249.

Wagh D A, Rasse T M, Asan E, Hofbauer A, Schwenkert I, Dürrbeck H, Buchner S, Dabauvalle M C, Schmidt M, Qin G, Wichmann C, Kittel R, Sigrist S J, Buchner E. 2006. Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in DrosophilaNeuron49, 833.

Wuyun Q Q G, Zhang Y, Yuan J X, Zhang J, Ren C, Wang Q, Yan S C, Liu W, Wang G R. 2023. A classic screening marker does not affect antennal electrophysiology but strongly regulates reproductive behaviours in Bactrocera dorsalisInsect Molecular Biology3, 136–146.

Xu J, Liu W, Yang D H, Chen S Q, Chen K, Liu Z L, Yang X, Meng J, Zhu G H, Dong S L, Zhang Y, Zhan S, Wang G R, Huang Y P. 2020. Regulation of olfactory-based sex behaviors in the silkworm by genes in the sex-determination cascade. PLoS Genetics16, e1008622.

Yan Y, Aumann RA, Häcker I, Schetelig M F. 2023. CRISPR-based genetic control strategies for insect pests. Journal of Integrative Agriculture22, 651–668.

Yuan J, Zhang J, Zhang Y, Wuyun Q Q G, Liu W, Yan S C, Wang G R. 2022. Protocols for CRISPR/Cas9 mutagenesis of the oriental fruit fly Bactrocera dorsalisJove-Journal of Visualized Experiments, 187, e64195.

Zhang Y, Wuyun Q Q G, Wang Q, Luo Z C, Yuan J X, Zhang J,Yan S C, Liu W, Wang G R. 2023. MFS transporter Bdorwp does not affect antennal electrophysiology but regulates reproductive behaviors in Bactrocera dorsalisJournal of Agricultural and Food Chemistry71, 17014−17024.

Zhao Z, Tian D, McBride C S. 2021. Development of a pan-neuronal genetic driver in Aedes aegypti mosquitoes. Cell Reports Methods1, 100042.

[1] Baiwei Ma, Qi Chen, Xi Chu, Yidong Zuo, Jiayu Wang, Yi Yang, Guirong Wang, Bingzhong Ren. Glomerular organization in the antennal lobe of the oriental armyworm Mythimna separata[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3812-3829.
[2] CAO Song, SUN Dong-dong, LIU Yang, YANG Qing, WANG Gui-rong.

Mutagenesis of odorant coreceptor Orco reveals the distinct role of olfaction between sexes in Spodoptera frugiperda [J]. >Journal of Integrative Agriculture, 2023, 22(7): 2162-2172.

[3] LIU Su, HUANG Yuan-jie, QIAO Fei, ZHOU Wen-wu, GONG Zhong-jun, CHENG Jia-an , ZHU Zeng-rong . Cloning, Tissue Distribution, and Transmembrane Orientation of the Olfactory Co-Receptor Orco from Two Important Lepidopteran Rice Pests, the Leaffolder (Cnaphalocrocis medinalis) and the Striped Stem Borer (Chilo suppressalis)[J]. >Journal of Integrative Agriculture, 2013, 12(10): 1816-1825.
No Suggested Reading articles found!