Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (3): 925-935    DOI: 10.1016/j.jia.2024.06.020
Section 3: Adaptive management strategies Advanced Online Publication | Current Issue | Archive | Adv Search |
Vegetation patches modify the acquisition of nitrogen by plants and microorganisms in a degraded alpine steppe
Bo Pang1, 2, 4, Lirong Zhao1, 2, 4, Xingxing Ma3, Jiangtao Hong1, 4#, Ziyin Du5, Xiaodan Wang1, 4#

1 Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China

2 University of Chinese Academy of Sciences, Beijing 100049, China

3 Shanxi Normal University, Taiyuan 030031, China

4 Xainza Alpine Steppe and Wetland Ecosystem Observation Station, Xainza 853100, China

5 School of Land and Resources, China West Normal University, Nanchong 637009, China

 Highlights 
Plants in palatable species patches absorbed more 15N than plants in unpalatable species patches. 
15N recovery of microorganisms in unpalatable species patches was higher than that in palatable species patches. 
Microorganisms competed strongly for N might reduce the uptake of nutrients by plants.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

氮(N)是植物和土壤微生物必需的营养元素,但陆地生态系统常受到N限制。目前,有关不同植被斑块类型如何影响草原生态系统中植物与土壤微生物之间N分配的研究仍存在不足。选取青藏高原退化高寒草原5种常见的植被斑块进行15N标记实验(15N-NO315N-NH4+),对不同植被斑块类型下植物和微生物的N获取策略进行研究。结果表明,5种植被斑块中植物和土壤微生物均偏好吸收NO3。适口性较好植物斑块中的植物N吸收量显著高于植被适口性较差斑块中的植物,而植被适口性较差斑块中的土壤微生物N吸收量则显著高于植被适口性较好的斑块。5种植被斑块类型中亚早熟禾(Poa litwinowiana)斑块中植物的N吸收量最高(NO3:13.32–51.28 mg m-2;NH4+:0.35–1.36 mg m-2),而冰川棘豆(Oxytropis glacialis)斑块中土壤微生物的N吸收量最高(NO3:846.97–1659.87 mg m-2;NH4+:108.75–185.14 mg m-2)。所有植被斑块中土壤微生物N吸收量高于植物N吸收量(即微生物氮吸收与植物氮吸收之比大于1)。随着高寒草原植被退化程度的加剧,植物的N吸收能力下降,而土壤微生物的N吸收能力增强。土壤微生物较强的N竞争能力可能会降低植物的营养吸收,对N素限制的高寒草原植被恢复产生不利影响。



Abstract  
Nitrogen (N) is an essential nutrient for both plants and soil microbes, but it often has limited availability.  Currently, little is known about the effects of different vegetation patch types on the partitioning of N between plants and soil microorganisms in grassland ecosystems.  In the present study, we performed a 15N-labelling experiment (using 15N-NO3 and 15N-NH4+) to investigate N uptake by plant biomass and microbial biomass for five common vegetation patch types in a degraded alpine steppe on the Tibetan Plateau, China.  The results showed that plants and soil microorganisms in all patches showed a clear preference for the uptake of NO3.  Plants in patches dominated by palatable species absorbed more N than plants in unpalatable species patches, while N uptake in the microbial biomass in unpalatable species patches was higher than that in palatable species patches.  For the two soil depths, plants in Poa litwinowiana patches had the highest N uptake (NO3: 13.32–51.28 mg m–2; NH4+: 0.35–1.36 mg m–2), whereas microbial biomass in Oxytropis glacialis patches had the highest N uptake (NO3: 846.97–1,659.87 mg m–2; NH4+: 108.75–185.14 mg m–2) among the five vegetation patch types.  For both forms of N, soil microorganisms acquired relatively more N than the plants in the five vegetation patch types (i.e., the ratio of microbial biomass N uptake to plant biomass N uptake was greater than 1).  The N-absorbing capacity of plants decreased, whereas the capacity of soil microorganisms to take up N increased with the degradation of vegetation patches.  Microorganisms that compete more strongly for N might reduce the uptake of nutrients by plants in degraded patches, which would not be conducive to the restoration of vegetation in N-limited alpine grasslands.



Keywords:  alpine grassland       grassland degradation        soil microbe        nutrition competition        ammonium nitrogen        nitrate  
Received: 12 April 2024   Accepted: 11 May 2024
Fund: 
This research was supported by the Second Tibetan Plateau Scientific Expedition and Research Program, China (2019QZKK0404), the National Natural Science Foundation of China (42271070), the West Light Scholar of Chinese Academy of Sciences (xbzg-zdsys-202202) and the Technology Major Project of Tibetan Autonomous Region of China (XZ202201ZD0005G01).  
About author:  Bo Pang, E-mail: pangbo0831@imde.ac.cn; #Correspondence Jiangtao Hong, E-mail: hongjiangtao@imde.ac.cn; Xiaodan Wang, E-mail: wxd@imde.ac.cn

Cite this article: 

Bo Pang, Lirong Zhao, Xingxing Ma, Jiangtao Hong, Ziyin Du, Xiaodan Wang. 2025. Vegetation patches modify the acquisition of nitrogen by plants and microorganisms in a degraded alpine steppe. Journal of Integrative Agriculture, 24(3): 925-935.

Adler P B, Raff D A, Lauenroth W K. 2001. The effect of grazing on the spatial heterogeneity of vegetation. Oecologia128, 465–479.

Andresen L C, Jonasson S, Ström L, Michelsen A. 2008. Uptake of pulse injected nitrogen by soil microbes and mycorrhizal and non-mycorrhizal plants in a species-diverse subarctic heath ecosystem. Plant and Soil313, 283–295.

Ashton I W, Miller A E, Bowman W D, Suding K N. 2010. Niche complementarity due to plasticity in resource use: Plant partitioning of chemical N forms. Ecology91, 3252–3260.

Azam F, Simmons F W, Mulvaney R L. 1993. Immobilization of ammonium and nitrate and their interaction with native N in three Illinois Mollisols. Biology and Fertility of Soils15, 50–54.

Baraza E, Zamora R, Hódar J A. 2006. Conditional outcomes in plant–herbivore interactions: Neighbours matter. Oikos113, 148–156.

Bardgett R D, Streeter T C, Bol R. 2003. Soil microbes compete effectively with plants for organic-nitrogen inputs to temperate grasslands. Ecology84, 1277–1287.

Berger H, Basheer A, Böck S, Reyes-Dominguez Y, Dalik T, Altmann F, Strauss J. 2008. Dissecting individual steps of nitrogen transcription factor cooperation in the Aspergillus nidulans nitrate cluster. Molecular Microbiology69, 1385–1398.

Cable J M, Ogle K, Barron-Gafford G A, Bentley L P, Cable W L, Scott R L, Williams D G, Huxman T E. 2013. Antecedent conditions influence soil respiration differences in shrub and grass patches. Ecosystems16, 1230–1247.

Cipriotti P A, Aguiar M R, Wiegand T, Paruelo J M. 2019. Combined effects of grazing management and climate on semi-arid steppes: Hysteresis dynamics prevent recovery of degraded rangelands. Journal of Applied Ecology56, 2155–2165.

Dong S K, Shang Z H, Gao J X, Boone R B. 2020. Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau. Agriculture Ecosystems & Environment287, 106684.

Dong S K, Wen L, Li Y Y, Wang X X, Zhu L, Li X Y. 2012. Soil-quality effects of grassland degradation and restoration on the Qinghai-Tibetan Plateau. Soil Science Society of America Journal76, 2256–2264.

Dumont B, Carrère P, Ginane C, Farruggia A, Lanore L, Tardif A, Decuq F, Darsonville O, Louault F. 2011. Plant–herbivore interactions affect the initial direction of community changes in an ecosystem manipulation experiment. Basic and Applied Ecology12, 187–194.

Dunn R M, Mikola J, Bol R, Bardgett R D. 2006. Influence of microbial activity on plant–microbial competition for organic and inorganic nitrogen. Plant and Soil289, 321–334.

Harrison K A, Bol R, Bardgett R D. 2008. Do plant species with different growth strategies vary in their ability to compete with soil microbes for chemical forms of nitrogen? Soil Biology & Biochemistry40, 228–237.

Hodge A, Robinson D, Fitter A. 2000. Are microorganisms more effective than plants at competing for nitrogen? Trends in Plant Science5, 304–308.

Hong J T, Ma X X, Yan Y, Zhang X K, Wang X D. 2018. Which root traits determine nitrogen uptake by alpine plant species on the Tibetan Plateau? Plant and Soil424, 63–72.

Jackson L E, Schimel J P, Firestone M K. 1989. Short-term partitioning of ammonium and nitrate between plants and microbes in an annual grassland. Soil Biology & Biochemistry21, 409–415.

Jensen P S, Xenakis S N, Wolf P, Bain M W. 1991. The “military family syndrome” revisited: “By the numbers”. Journal of Nervous and Mental Disease179, 102–107.

Kuzyakov Y, Xu X L. 2013. Competition between roots and microorganisms for nitrogen: Mechanisms and ecological relevance. New Phytologist198, 656–669.

Lambers H, Chapin F S, Pons T L. 2008. Plant Physiological Ecology. 2nd ed. Springer Publishers, New York. pp. 137–153.

Li Y Y, Dong S K, Liu S L, Wang X X, Wen L, Wu Y. 2014. The interaction between poisonous plants and soil quality in response to grassland degradation in the alpine region of the Qinghai-Tibetan Plateau. Plant Ecology215, 809–819.

Lipson D, Näsholm T. 2001. The unexpected versatility of plants: Organic nitrogen use and availability in terrestrial ecosystems. Oecologia128, 305–316.

Liu M, Adl S, Cui X Y, Tian Y Q, Xu X L, Kuzyakov Y. 2020. In situ methods of plant–microbial interactions for nitrogen in rhizosphere. Rhizosphere13, 100186.

Liu Q Y, Qiao N, Xu X L, Xin X P, Han J Y, Tian Y Q, Ouyang H, Kuzyakov Y. 2016. Nitrogen acquisition by plants and microorganisms in a temperate grassland. Scientific Reports6, 22642.

Ludwig J A, Tongway D J, Eager R W, Williams R J, Cook G D. 1999. Fine-scale vegetation patches decline in size and cover with increasing rainfall in Australian savannas. Landscape Ecology14, 557–566.

Ludwig J A, Wilcox B P, Breshears D D, Tongway D J, Imeson A C. 2005. Vegetation patches and runoff-erosion as interacting ecohydrological processes in semiarid landscapes. Ecology86, 288–297.

Mary B, Recous S, Darwis D, Robin D. 1996. Interactions between decomposition of plant residues and nitrogen cycling in soil. Plant and Soil181, 71–82.

McKane R B, Johnson L C, Shaver G R, Nadelhoffer K J, Rastetter E B, Fry B, Giblin A E, Kielland K, Kwiatkowski B L, Laundre J A, Murray G. 2002. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature415, 68–71.

Muñoz-Robles C, Reid N, Tighe M, Briggs S V, Wilson B. 2011. Soil hydrological and erosional responses in patches and inter-patches in vegetation states in semi-arid Australia. Geoderma160, 524–534.

Nuñez C I, Aizen M A, Ezcurra C. 1999. Species associations and nurse plant effects in patches of high-Andean vegetation. Journal of Vegetation Science10, 357–364.

Öckinger E, Eriksson A K, Smith H G. 2006. Effects of grassland abandonment, restoration and management on butterflies and vascular plants. Biological Conservation133, 291–300.

Okayasu T, Okuro T, Jamsran U, Takeuchi K. 2012. Degraded rangeland dominated by unpalatable forbs exhibits large-scale spatial heterogeneity. Plant Ecology213, 625–635.

Orwin K H, Buckland S M, Johnson D, Turner B L, Smart S, Oakley S, Bardgett R D. 2010. Linkages of plant traits to soil properties and the functioning of temperate grassland. Journal of Ecology98, 1074–1083.

Ouyang S N, Tian Y Q, Liu Q Y, Zhang L, Wang R X, Xu X L. 2016. Nitrogen competition between three dominant plant species and microbes in a temperate grassland. Plant and Soil408, 121–132.

Rathke G W, Behrens T, Diepenbrock W. 2006. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): A review. Agriculture Ecosystems & Environment117, 80–108.

Reid K D, Wilcox B P, Breshears D D, MacDonald L. 1999. Runoff and erosion in a Piñon–Juniper woodland influence of vegetation patches. Soil Science Society of America Journal63, 1869–1879.

Reynolds H L, Packer A, Bever J D, Clay K. 2003. Grassroots ecology: Plant–microbe–soil interactions as drivers of plant community structure and dynamics. Ecology84, 2281–2291.

Reynolds J F, Virginia R A, Kemp P R, de Soyza A G, Tremmel D C. 1999. Impact of drought on desert shrubs: Effects of seasonality and degree of resource island development. Ecological Monographs69, 69–106.

Song M H, Xu X L, Hu Q W, Tian Y Q, Hua O Y, Zhou C P. 2007. Interactions of plant species mediated plant competition for inorganic nitrogen with soil microorganisms in an alpine meadow. Plant and Soil297, 127–137.

Suttie J M, Reynolds S G, Batello C. 2005. Grasslands of the World. Food & Agriculture Organization, Italy.

Wang K B, Li J P, Shangguan Z P. 2012. Biomass components and environmental controls in Ningxia grasslands. Journal of Integrative Agriculture11, 2079–2087.

Weigelt A, Bol R, Bardgett R D. 2005. Preferential uptake of soil nitrogen forms by grassland plant species. Oecologia142, 627–635.

Wen L, Dong S K, Li Y Y, Li X Y, Shi J J, Wang Y L, Liu D M, Ma Y S. 2013. Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan Plateau, China. PLoS ONE8, e58432.

Xu X L, Ouyang H, Cao G M, Richter A, Wanek W, Kuzyakov Y. 2011a. Dominant plant species shift their nitrogen uptake patterns in response to nutrient enrichment caused by a fungal fairy in an alpine meadow. Plant and Soil341, 495–504.

Xu X L, Ouyang H, Richter A, Wanek W, Cao G M, Kuzyakov Y. 2011b. Spatio-temporal variations determine plant-microbe competition for inorganic nitrogen in an alpine meadow. Journal of Ecology99, 563–571.

Yan Y, Tian L L, Du Z Y, Chang S X, Cai Y J. 2019. Carbon, nitrogen and phosphorus stocks differ among vegetation patch types in a degraded alpine steppe. Journal of Soils and Sediments19, 1809–1819.

Zak D R, Grigal D F, Gleeson S, Tilman D. 1990. Carbon and nitrogen cycling during old-field succession: Constraints on plant and microbial biomass. Biogeochemistry11, 111–129.

[1] Jiannan Xiao, Shikui Dong, Hao Shen, Ran Zhang, Hang Shi, Fencai He, Wei Li, Xiaoyan Li, Yu Li, Chengxiang Ding. Short-term P addition may improve the stimulating effects of N deposition on N2O emissions in alpine grasslands on the Qinghai-Tibet Plateau[J]. >Journal of Integrative Agriculture, 2025, 24(3): 900-912.
[2] Yuzhen Liu, Xinquan Zhao, Xiaoxia Yang, Wenting Liu, Bin Feng, Shengnan Sun, Quanmin Dong. Yak and Tibetan sheep mixed grazing enhances plant functional diversity in alpine grassland[J]. >Journal of Integrative Agriculture, 2025, 24(3): 936-948.
[3] Tong Li, Lizhen Cui, Yu Wu, Rajiv Pandey, Hongdou Liu, Junfu Dong, Weijin Wang, Zhihong Xu, Xiufang Song, Yanbin Hao, Xiaoyong Cui, Jianqing Du, Xuefu Zhang, Yanfen Wang. Unveiling and advancing grassland degradation research using a BERTopic modelling approach[J]. >Journal of Integrative Agriculture, 2025, 24(3): 949-965.
No Suggested Reading articles found!