|
Abdollahi-Arpanahi R, Gianola D, Penagaricano F. 2020. Deep learning versus parametric and ensemble methods for genomic prediction of complex phenotypes. Genetics Selection Evolution, 52, 12.
Aggarwal C C, Hinneburg A, Keim D A. 2001. On the surprising behavior of distance metrics in high dimensional space. In: Van den Bussche J, Vianu V, eds., Database Theory-ICDT 2001. Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 420–434.
Alves A A C, Espigolan R, Bresolin T, Costa R M, Fernandes Júnior G A, Ventura R V, Carvalheiro R, Albuquerque L G. 2021. Genome-enabled prediction of reproductive traits in Nellore cattle using parametric models and machine learning methods. Animal Genetics, 52, 32–46.
An B, Liang M, Chang T, Duan X, Du L, Xu L, Zhang L, Gao X, Li J, Gao H. 2021. KCRR: A nonlinear machine learning with a modified genomic similarity matrix improved the genomic prediction efficiency. Briefings in Bioinformatics, 22, 6.
Aruna S, Rajagopalan D S P. 2013. A novel SVM based CSSFFS feature selection algorithm for detecting breast cancer. International Journal of Computer Applications, 31, 8.
Bowler A L, Pound M P, Watson N J. 2022. A review of ultrasonic sensing and machine learning methods to monitor industrial processes. Ultrasonics, 124, 106776.
Breiman L. 2001. Random forests. Machine Learning, 45, 5–32.
Byvatov E, Schneider G. 2003. Support vector machine applications in bioinformatics. Applied Bioinformatics, 2, 67–77.
Cherkassky V, Ma Y. 2004. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw, 17, 113–126.
Clark S A, Hickey J M, van der Werf J H. 2011. Different models of genetic variation and their effect on genomic evaluation. Genetics Selection Evolution, 43, 18.
Cleveland M A, Hickey J M, Forni S. 2012. A common dataset for genomic analysis of livestock populations. Genes, Genomes, Genetics, 2, 429–435.
Cortes C, Vapnik V. 1995. Support-vector networks. Machine Learning, 20, 273–297.
Crossa J, Campos G d l, Pérez P, Gianola D, Burgueño J, Araus J L, Makumbi D, Singh R P, Dreisigacker S, Yan J, Arief V, Banziger M, Braun H J. 2010. Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics, 186, 713–724.
Crossa J, Pérez P, Hickey J, Burgueño J, Ornella L, Cerón-Rojas J, Zhang X, Dreisigacker S, Babu R, Li Y, Bonnett D, Mathews K. 2014. Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity, 112, 48–60.
Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, de Los Campos G, Burgueño J, González-Camacho J M, Pérez-Elizalde S, Beyene Y, Dreisigacker S, Singh R, Zhang X, Gowda M, Roorkiwal M, Rutkoski J, Varshney R K. 2017. Genomic selection in plant breeding: Methods, models, and perspectives. Trends in Plant Science, 22, 961–975.
Daetwyler H D, Pong-Wong R, Villanueva B, Woolliams J A. 2010. The impact of genetic architecture on genome-wide evaluation methods. Genetics, 185, 1021–1031.
Gao X, Jia B, Li G, Ma X. 2022. Calorific value forecasting of coal gangue with hybrid kernel function-support vector regression and genetic algorithm. Energies, 15, 18.
García-Ruiz A, Cole J B, VanRaden P M, Wiggans G R, Ruiz-López F J, Van Tassell C P. 2016. Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection. Proceedings of the National Academy of Sciences of the United States of America, 113, E3995–E4004.
Gianola D, Campos G, Gonzalez-Recio O, Long N, Okut H, Rosa G, Weigel K, Wu X L. 2018. Statistical learning methods for genome-based analysis of quantitative traits. Conference: Machine Learning.
Gianola D, Okut H, Weigel K A, Rosa G J. 2011. Predicting complex quantitative traits with Bayesian neural networks: A case study with Jersey cows and wheat. BMC Genetics, 12, 87.
Goddard M, Hayes B. 2008. Genomic selection. Journal of Animal Breeding and Genetics=Zeitschrift für Tierzüchtung und Züchtungsbiologie, 124, 323–330.
González-Camacho J M, Ornella L, Pérez-Rodríguez P, Gianola D, Dreisigacker S, Crossa J. 2018. Applications of machine learning methods to genomic selection in breeding wheat for rust resistance. Plant Genome, 11, 2.
Gonzalez-Recio O, Forni S. 2011. Genome-wide prediction of discrete traits using Bayesian regressions and machine learning. Genetics Selection Evolution, 43, 7.
Gonzalez-Recio O, Rosa G, Gianola D. 2014. Machine learning methods and predictive ability metrics for genome-wide prediction of complex traits. Livestock Science, 166, 217–231.
Habier D, Fernando R L, Kizilkaya K, Garrick D J. 2011. Extension of the bayesian alphabet for genomic selection. BMC Bioinformatics, 12, 186.
Handelman G S, Kok H K, Chandra R V, Razavi A H, Lee M J, Asadi H. 2018. eDoctor: Machine learning and the future of medicine. Journal of Internal Medicine, 284, 603–619.
Hansen K B, Borch C. 2021. The absorption and multiplication of uncertainty in machine-learning-driven finance. British Journal of Sociology, 72, 1015–1029.
Hayes B J, Bowman P J, Chamberlain A J, Goddard M E. 2009. Invited review: Genomic selection in dairy cattle: Progress and challenges. Journal of Dairy Science, 92, 433–443.
Heffner E L, Sorrells M E, Jannink J L. 2009. Genomic selection for crop improvement. Crop Science, 49, 1–12.
Huang S, Cai N, Pacheco P P, Narrandes S, Wang Y, Xu W. 2018. Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genomics Proteomics, 15, 41–51.
Ibrikci T, Ustun D, Kaya I E. 2012. Diagnosis of several diseases by using combined kernels with Support Vector Machine. Journal of Medical Systems, 36, 1831–1840.
Kung S Y. 2014. Kernel Methods and Machine Learning. Cambridge University Press, Cambridge.
LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature, 521, 436–444.
Legarra A, Aguilar I, Misztal I. 2009. A relationship matrix including full pedigree and genomic information. Journal of Dairy Science, 92, 4656–4663.
Liang M, Miao J, Wang X, Chang T, An B, Duan X, Xu L, Gao X, Zhang L, Li J, Gao H. 2021. Application of ensemble learning to genomic selection in Chinese simmental beef cattle. Journal of Animal Breeding and Genetics, 138, 291–299.
Lillehammer M, Meuwissen T H, Sonesson A K. 2013. Genomic selection for two traits in a maternal pig breeding scheme. Journal of Animal Science, 91, 3079–3087.
Long N, Gianola D, Rosa G J, Weigel K A. 2011. Application of support vector regression to genome-assisted prediction of quantitative traits. Theoretical and Applied Genetics, 123, 1065–1074.
Meuwissen T H, Hayes B J, Goddard M E. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157, 1819–1829.
Montesinos-López O A, Martín-Vallejo J, Crossa J, Gianola D, Hernández-Suárez C M, Montesinos-López A, Juliana P, Singh R. 2019. A benchmarking between deep learning, support vector machine and bayesian threshold best linear unbiased prediction for predicting ordinal traits in plant breeding. Genes, Genomes, Genetics, 9, 601–618.
Ogutu J O, Piepho H P, Schulz-Streeck T. 2011. A comparison of random forests, boosting and support vector machines for genomic selection. BMC Proceedings, 5 (Suppl 3), S11.
Ornella L, Pérez P, Tapia E, González-Camacho J M, Burgueño J, Zhang X, Singh S, Vicente F S, Bonnett D, Dreisigacker S, Singh R, Long N, Crossa J. 2014. Genomic-enabled prediction with classification algorithms. Heredity (Edinb), 112, 616–626.
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay É. 2011. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
Schaeffer L R. 2006. Strategy for applying genome-wide selection in dairy cattle. Journal of Animal Breeding and Genetics, 123, 218–223.
Shrestha D L, Solomatine D P. 2006. Experiments with AdaBoost.RT, an improved boosting scheme for regression. Neural Computation, 18, 1678–1710.
Smits G F, Jordaan E M. 2002. Improved SVM regression using mixtures of kernels. In: Proceedings of the 2002 International Joint Conference on Neural Networks. Institute of Electrical and Electronics Engineers, vol. 3. pp. 2785–2790.
Srivastava S, Lopez B I, Kumar H, Jang M, Chai H H, Park W, Park J E, Lim D. 2021. Prediction of Hanwoo cattle phenotypes from genotypes using machine learning methods. Animals (Basel), 11, 7.
Sun X, Habier D, Fernando R L, Garrick D J, Dekkers J C. 2011. Genomic breeding value prediction and QTL mapping of QTLMAS2010 data using Bayesian Methods. BMC Proceedings, 5 (Suppl 3), S13.
Tian Z, Li S, Wang Y, Wang X. 2017. Wind power prediction method based on hybrid kernel function support vector machine. Wind Engineering, 42, 252–264.
Tibshirani R. 2011. Regression shrinkage and selection via the lasso: A Retrospective. Journal of the Royal Statistical Society Series B (Statistical Methodology), 73, 273–282.
VanRaden P M. 2008. Efficient methods to compute genomic predictions. Journal of Dairy Science, 91, 4414–4423.
Varona L, Legarra A, Toro M A, Vitezica Z G. 2018. Non-additive effects in genomic selection. Frontiers in Genetics, 9, 78.
Wang K, Abid M A, Rasheed A, Crossa J, Hearne S, Li H. 2023. DNNGP, a deep neural network-based method for genomic prediction using multi-omics data in plants. Molecular Plant, 16, 279–293.
Wang X, Shi S, Wang G, Luo W, Wei X, Qiu A, Luo F, Ding X. 2022. Using machine learning to improve the accuracy of genomic prediction of reproduction traits in pigs. Journal of Animal Science and Biotechnology, 13, 60.
Weiskittel T M, Correia C, Yu G T, Ung C Y, Kaufmann S H, Billadeau D D, Li H. 2021. The trifecta of single-cell, systems-biology, and machine-learning approaches. Genes (Basel), 12, 7.
Whittaker J C, Thompson R, Denham M C. 2000. Marker-assisted selection using ridge regression. Genetics Research, 75, 249–252.
Wolc A, Stricker C, Arango J, Settar P, Fulton J E, O’Sullivan N P, Preisinger R, Habier D, Fernando R, Garrick D J, Lamont S J, Dekkers J C. 2011. Breeding value prediction for production traits in layer chickens using pedigree or genomic relationships in a reduced animal model. Genetics Selection Evolution, 43, 5.
Yi N, Xu S. 2008. Bayesian LASSO for quantitative trait loci mapping. Genetics, 179, 1045–1055.
Yin L, Zhang H, Tang Z, Yin D, Fu Y, Yuan X, Li X, Liu X, Zhao S. 2023. HIBLUP: An integration of statistical models on the BLUP framework for efficient genetic evaluation using big genomic data. Nucleic Acids Research, 51, 3501–3512.
Yin L, Zhang H, Zhou X, Yuan X, Zhao S, Li X, Liu X. 2020. KAML: Improving genomic prediction accuracy of complex traits using machine learning determined parameters. Genome Biology, 21, 146.
Zhao D, Liu H, Zheng Y, He Y, Lu D, Lyu C. 2019. Whale optimized mixed kernel function of support vector machine for colorectal cancer diagnosis. Journal of Biomedical Informatics, 92, 103124.
Zhao W, Lai X, Liu D, Zhang Z, Ma P, Wang Q, Zhang Z, Pan Y. 2020. Applications of support vector machine in genomic prediction in pig and maize populations. Frontiers in Genetics, 11, 598318.
|