Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (12): 4703-4714    DOI: 10.1016/j.jia.2024.02.014
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Studying of the regulatory roles of response regulators GlrR and ArcA in xenocoumacins biosynthesis in Xenorhabdus nematophila CB6
Xiaohui Li, Xiaobing Zheng, Yijie Dong, Youcai Qin, Fenglian Jia, Baoming Yuan, Jiaqi Duan, Beibei Li, Guangyue Li#

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China

 Highlights 
In this study, we systematically investigated the role of two-component systems (TCSs) in regulating Xcn1 production in Xenorhabdus nematophila strain CB6 and identified two key response regulators, GlrR and ArcA, that critically influence this process.
ArcA positively regulates the biosynthesis of Xcns by directly binding to the promoter regions of xcnA and xcnB, thereby modulating the transcription of the Xcns biosynthetic gene cluster.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
Xencoumacins(Xcns)是嗜线虫致病杆菌产生的主要抗菌活性天然产物,在植物病害防治领域具有广阔的应用前景。目前,关于Xcns生物合成的调控研究取得了一些进展,双组分调控系统EnvZ/OmpR和CpxA/CpxR中的反应调节蛋白OmpR和CpxR被报道参与调控Xcns的生物合成,但是对Xcns生物合成的调控机制仍缺乏系统深入的认知。在本研究中,我们首先利用生物信息学方法从嗜线虫致病杆菌CB6菌株的基因组中识别了21个双组分调控系统,通过基因敲除和回补实验表明反应调节蛋白GlrR和ArcA参与调控Xcns的生物合成。RT-qPCR和融合报告基因技术研究表明GlrR和ArcA通过正向调控Xcns生物合成基因簇相关基因的表达来调控Xcns的生物合成,进一步通过生物信息学分析、凝胶阻滞实验(EMSA)和DNase I足迹实验解析了GlrR和ArcA的具体调控机制,实验结果表明GlrR间接调控Xcns的生物合成,ArcA通过直接结合在xcnAxcnB基因的启动子区域来调控Xcns的生物合成。ArcA在xcnA基因启动子区域的具体结合位点为5′-TCTGATGTTAATGTTTTGTCG-3′,ArcA在xcnB基因启动子区域的具体结合位点为5′-TTTATTAAAAATGAATTGTTACG-3′。此外,研究了基因glrRarcA的缺失对细胞的形态和生长的影响。扫描电镜结果表明GlrR不影响细胞的形态,但arcA的缺失导致细胞长度明显变长,CB6菌株、ΔglrR和ΔarcA的细胞长度分别为3.23 μm、3.53 μm和7.98 μm。基因glrRarcA的缺失导致菌株的生长受到了抑制,CB6菌株、ΔglrR和ΔarcA在96 h的OD600光密度值分别为17.03、12.23和11.94,表明GlrR和ArcA影响细胞的生长。本研究首次揭示了反应调节蛋白GlrR和ArcA参与调控嗜线虫致病杆菌Xcns的生物合成,并解析了其调控机制,为构建Xcns高产菌株提供理论指导。


Abstract  

Xenocoumacins (Xcns), the major antimicrobial natural products produced by Xenorhabdus nematophila, have gained widespread attention for their potential application in crop protection.  However, the regulatory mechanisms involved in the biosynthesis of Xcns remain poorly understood.  In this study, we identified 21 potential two-component systems (TCSs) in X. nematophila CB6 by bioinformatic analysis.  Among them, the response regulators (RRs), GlrR and ArcA, were proven to positively regulate the production of Xcns based on gene deletion and complementation experiments.  In addition, our results showed that GlrR played an important role in cell growth, while ArcA was involved in both cell morphology and growth.  Using a variety of molecular biological and biochemical techniques, we found that GlrR controlled the Xcns biosynthesis by indirectly regulating the expression levels of the biosynthetic gene cluster (BGC).  ArcA directly binded to the promoter regions of xcnA and xcnB to regulate the transcription of the Xcns BGC, and the binding sites were also identified.  This study provides valuable insights into the regulatory network of Xcns biosynthesis, which will contribute to the construction of a high-yielding strain.

Keywords:  Xenorhabdus nematophila       xenocoumacins       two-component systems       GlrR       ArcA  
Received: 09 September 2023   Accepted: 02 January 2024 Online: 29 February 2024  
Fund: We thank the support from the National Natural Science Foundation of China (31972327), the Key Research and Development Program Project of Xinjiang, China (2022B02044), the National Key R&D Program of China (2023YFD1700700), the Agricultural Science and Technology Innovation Program of CAAS and the Chinese Academy of Agriculture Sciences for the fund of Elite Youth Program.  

About author:  Xiaohui Li, E-mail: xiaohuili0101@163.com; #Correspondence Guangyue Li, Tel: +86-10-82105929, E-mail: liguangyue@caas.cn

Cite this article: 

Xiaohui Li, Xiaobing Zheng, Yijie Dong, Youcai Qin, Fenglian Jia, Baoming Yuan, Jiaqi Duan, Beibei Li, Guangyue Li. 2025. Studying of the regulatory roles of response regulators GlrR and ArcA in xenocoumacins biosynthesis in Xenorhabdus nematophila CB6. Journal of Integrative Agriculture, 24(12): 4703-4714.

Abd-Elgawad M M M. 2022. Xenorhabdus spp.: An overview of the useful facets of mutualistic bacteria of entomopathogenic nematodes. Life12, 1360.

Barakat M, Ortet P, Jourlin-Castelli C, Ansaldi M, Mejean V, Whitworth D E. 2009. P2CS: A two-component system resource for prokaryotic signal transduction research. BMC Genomics10, 315.

Bode H B, Reimer D, Fuchs S W, Kirchner F, Dauth C, Kegler C, Lorenzen W, Brachmann A O, Grun P. 2012. Determination of the absolute configuration of peptide natural products by using stable isotope labeling and mass spectrometry. Chemistry18, 2342–2348.

Booysen E, Dicks L M T. 2020. Does the future of antibiotics lie in secondary metabolites produced by xenorhabdus spp.? A review. Probiotics and Antimicrobial Proteins12, 1310–1320.

Bossuet N, Guyonnet C, Chagneau C V, Tang-Fichaux M, Penary M, Loubet D, Branchu P, Oswald E, Nougayrede J P. 2023. Oxygen concentration modulates colibactin production. Gut Microbes15, 2222437.

Brown A N, Anderson M T, Bachman M A, Mobley H L T. 2022. The ArcAB two-component system: Function in metabolism, redox control, and infection. Microbiology And Molecular Biology Reviews86, e0011021.

Buchrieser C, Göpel Y, Görke B. 2018. Interaction of lipoprotein QseG with sensor kinase QseE in the periplasm controls the phosphorylation state of the two-component system QseE/QseF in Escherichia coliPLoS Genetics14, e1007547.

Buschiazzo A, Trajtenberg F. 2019. Two-component sensing and regulation: How do histidine kinases talk with response regulators at the molecular level? Annual Review of Microbiology73, 507–528.

Capra E J, Laub M T. 2012. Evolution of two-component signal transduction systems. Annual Review of Microbiology66, 325–347.

Casino P, Rubio V, Marina A. 2010. The mechanism of signal transduction by two-component systems. Current Opinion in Structural Biology20, 763–771.

Choi K R, Cho J S, Cho I J, Park D, Lee S Y. 2018. Markerless gene knockout and integration to express heterologous biosynthetic gene clusters in Pseudomonas putidaMetabolic Engineering47, 463–474.

Cruz-Bautista R, Ruiz-Villafan B, Romero-Rodriguez A, Rodriguez-Sanoja R, Sanchez S. 2023. Trends in the two-component system’s role in the synthesis of antibiotics by StreptomycesApplied Microbiology and Biotechnology107, 4727–4743.

Dreyer J, Malan A P, Dicks L M T. 2018. Bacteria of the genus xenorhabdus, a novel source of bioactive compounds. Frontiers in Microbiology9, 3177.

Evans M R, Fink R C, Vazquez-Torres A, Porwollik S, Jones-Carson J, Mcclelland M, Hassan H M. 2011. Analysis of the ArcA regulon in anaerobically grown Salmonella enterica sv. Typhimurium. BMC Microbiology11, 58.

Federowicz S, Kim D, Ebrahim A, Lerman J, Nagarajan H, Cho B K, Zengler K, Palsson B. 2014. Determining the control circuitry of redox metabolism at the genome-scale. PLoS Genetics10, e1004264.

Flamez C, Ricard I, Arafah S, Simonet M, Marceau M. 2008. Phenotypic analysis of Yersinia pseudotuberculosis 32777 response regulator mutants: New insights into two-component system regulon plasticity in bacteria. International Journal of Medical Microbiology298, 193–207.

Galperin M Y. 2006. Structural classification of bacterial response regulators: Diversity of output domains and domain combinations. Journal of Bacteriology188, 4169–4182.

Gao R, Bouillet S, Stock A M. 2019. Structural basis of response regulator function. Annual Review of Microbiology73, 175–197.

Guo S, Wang Z, Liu B, Gao J, Fang X, Tang Q, Bilal M, Wang Y, Zhang X. 2019. Effects of cpxR on the growth characteristics and antibiotic production of Xenorhabdus nematophilaMicrobial Biotechnology12, 447–458.

Guo S, Zhang S, Fang X, Liu Q, Gao J, Bilal M, Wang Y, Zhang X. 2017. Regulation of antimicrobial activity and xenocoumacins biosynthesis by pH in Xenorhabdus nematophilaMicrobial Cell Factories16, 203.

Hirakawa H, Kurushima J, Hashimoto Y, Tomita H. 2020. Progress overview of bacterial two-component regulatory systems as potential targets for antimicrobial chemotherapy. Antibiotics (Basel), 9, 635.

Van Der Hoeven R, Forst S. 2009. OpnS, an outer membrane porin of Xenorhabdus nematophila, confers a competitive advantage for growth in the insect host. Journal of Bacteriology191, 5471–5479.

Jia X, Zhao K, Liu F, Lin J, Lin C, Chen J. 2022. Transcriptional factor OmpR positively regulates prodigiosin biosynthesis in Serratia marcescens FZSF02 by binding with the promoter of the prodigiosin cluster. Frontiers in Microbiology13, 1041146.

Jin S, Hui M, Lu Y, Zhao Y. 2023. An overview on the two-component systems of Streptomyces coelicolorWorld Journal of Microbiology and Biotechnology39, 78.

Li G, Yang X. 2020. The research progress of secondary metabolite Xcn1 in Xenorhabdus nematophilaChinese Journal of Biological Control36, 1–8. (in Chinese)

Li P, Cao X, Zhang L, Lv M, Zhang L H. 2022. PhcA and PhcR regulate ralsolamycin biosynthesis oppositely in Ralstonia solanacearumFrontiers in Plant Science13, 903310.

Liu X, De Wulf P. 2004. Probing the ArcA-P modulon of Escherichia coli by whole genome transcriptional analysis and sequence recognition profiling. Journal of Biological Chemistry279, 12588–12597.

Maxwell P W, Chen G, Webster J M, Dunphy G B. 1994. Stability and activities of antibiotics produced during infection of the insect Galleria mellonella by two isolates of Xenorhabdus nematophilusApplied and Environmental Microbiology60, 715–721.

De La Nieta R S, Antoraz S, Alzate J F, Santamaria R I, Diaz M. 2020. Antibiotic production and antibiotic resistance: The two sides of AbrB1/B2, a two-component system of Streptomyces coelicolorFrontiers in Microbiology11, 587750.

Nochino N, Toya Y, Shimizu H. 2020. Transcription factor ArcA is a flux sensor for the oxygen consumption rate in Escherichia coliBiotechnology Journal15, e1900353.

Ortet P, Whitworth D E, Santaella C, Achouak W, Barakat M. 2015. P2CS: Updates of the prokaryotic two-component systems database. Nucleic Acids Research43, D536–541.

Pan X, Sun C, Tang M, You J, Osire T, Zhao Y, Xu M, Zhang X, Shao M, Yang S, Yang T, Rao Z, Atomi H. 2020. LysR-Type transcriptional regulator MetR controls prodigiosin production, methionine biosynthesis, cell motility, H2O2 tolerance, heat tolerance, and exopolysaccharide synthesis in Serratia marcescensApplied and Environmental Microbiology86, e02241–19.

Park D, Ciezki K, Van Der Hoeven R, Singh S, Reimer D, Bode H B, Forst S. 2009. Genetic analysis of xenocoumacin antibiotic production in the mutualistic bacterium Xenorhabdus nematophilaMolecular Microbiology73, 938–949.

Park D, Forst S. 2006. Co-regulation of motility, exoenzyme and antibiotic production by the EnvZ-OmpR-FlhDC-FliA pathway in Xenorhabdus nematophilaMolecular Microbiology61, 1397–1412.

Park D M, Akhtar M S, Ansari A Z, Landick R, Kiley P J. 2013. The bacterial response regulator ArcA uses a diverse binding site architecture to regulate carbon oxidation globally. PLoS Genetics9, e1003839.

Qin Y, Jia F, Li X, Li B, Ren J, Yang X, Li G. 2021. Improving the yield of xenocoumacin 1 by PBAD promoter replacement in Xenorhabdus nematophila CB6. Agriculture11, 1251.

Qin Y, Jia F, Zheng X, Li X, Duan J, Li B, Shen H, Yang X, Ren J, Li G. 2023. Enhancing the production of xenocoumacin 1 in Xenorhabdus nematophila CB6 by a combinatorial engineering strategy. Journal of Agricultural and Food Chemistry71, 8959–8968.

Reimer D, Luxenburger E, Brachmann A O, Bode H B. 2009. A new type of pyrrolidine biosynthesis is involved in the late steps of xenocoumacin production in Xenorhabdus nematophilaChemBioChem10, 1997–2001.

Schmittgen T D, Livak K J. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols3, 1101–1108.

Shi Y M, Bode H B. 2018. Chemical language and warfare of bacterial natural products in bacteria–nematode–insect interactions. Natural Product Reports35, 309–335.

Stock S P. 2019. Partners in crime: Symbiont-assisted resource acquisition in Steinernema entomopathogenic nematodes. Current Opinion in Insect Science32, 22–27.

Xia H, Li X, Li Z, Zhan X, Mao X, Li Y. 2020. The application of regulatory cascades in Streptomyces: Yield enhancement and metabolite mining. Frontiers in Microbiology11, 406.

Xiao G, Zheng X, Li J, Yang Y, Yang J, Xiao N, Liu J, Sun Z. 2022. Contribution of the EnvZ/OmpR two-component system to growth, virulence and stress tolerance of colistin-resistant Aeromonas hydrophilaFrontiers in Microbiology13, 1032969.

Xiao J, Chen T, Yang M, Zhang Y, Wang Q. 2012. Identification of qseEGF genetic locus and its roles in controlling hemolytic activity and invasion in fish pathogen Edwardsiella tardaLetters in Applied Microbiology55, 91–98.

Xu Y, Ke M, Li J, Tang Y, Wang N, Tan G, Wang Y, Liu R, Bai L, Zhang L, Wu H, Zhang B, Drake H L. 2019. TetR-type regulator SLCG_2919 is a negative regulator of lincomycin biosynthesis in Streptomyces lincolnensisApplied and Environmental Microbiology85, e02091–18.

Yang X, Qiu D, Yang H, Liu Z, Zeng H, Yuan J. 2010. Antifungal activity of xenocoumacin 1 from Xenorhabdus nematophilus var. pekingensis against Phytophthora infestansWorld Journal of Microbiology and Biotechnology27, 523–528.

Yang X, Zhang Y, Li S, Ye L, Wang X, Xiang W. 2022. SspH, a novel HATPase family regulator, controls antibiotic biosynthesis in StreptomycesAntibiotics11, 538.

Zhang S, Fang X, Tang Q, Ge J, Wang Y, Zhang X. 2019. CpxR negatively regulates the production of xenocoumacin 1, a dihydroisocoumarin derivative produced by Xenorhabdus nematophilaMicrobiology Open8, e00674.

Zhou Q, Ning S, Luo Y. 2020. Coordinated regulation for nature products discovery and overproduction in StreptomycesSynthetic and Systems Biotechnology5, 49–58.

Zhou T, Yang X, Qiu D, Zeng H. 2016. Inhibitory effects of xenocoumacin 1 on the different stages of Phytophthora capsici and its control effect on Phytophthora blight of pepper. BioControl62, 151–160.

Zianni M, Tessanne K, Merighi M, Laguna R, Tabita F R. 2006. Identification of the DNA bases of a DNase I footprint by the use of dye primer sequencing on an automated capillary DNA analysis instrument. Journal of Biomolecular Techniques17, 103–113.

Zong G, Cao G, Fu J, Zhang P, Chen X, Yan W, Xin L, Zhang W, Xu Y, Zhang R. 2022. MacRS controls morphological differentiation and natamycin biosynthesis in Streptomyces gilvosporeus F607. Microbiological Research262, 127077.

Zschiedrich C P, Keidel V, Szurmant H. 2016. Molecular mechanisms of two-component signal transduction. Journal of Molecular Biology428, 3752–3775.

[1] Tantan Zhang, Yali Liu, Shiqiang Ge, Peng Peng, Hu Tang, Jianwu Wang. Sugarcane/soybean intercropping with reduced nitrogen addition enhances residue-derived labile soil organic carbon and microbial network complexity in the soil during straw decomposition[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4216-4236.
[2] Fan Yu, Zehuai Yu, Jin Chai, Xikai Yu, Chen Fu, Xinwang Zhao, Hailong Chang, Jiawei Lei, Baoshan Chen, Wei Yao, Muqing Zhang, Jiayun Wu, Qinnan Wang, Zuhu Deng. Intergeneric chromosome-specific painting reveals differential chromosomal transmission from Tripidium arundinaceum in sugarcane progeny[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3751-3762.
[3] XIE Lei, QIN Jiang-tao, RAO Lin, CUI Deng-shuai, TANG Xi, XIAO Shi-jun, ZHANG Zhi-yan, HUANG Lu-sheng. Effects of carcass weight, sex and breed composition on meat cuts and carcass trait in finishing pigs[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1489-1501.
[4] XU Jing-sheng, DENG Yu-qing, CHENG Guang-yuan, ZHAI Yu-shan, PENG Lei, DONG Meng, XU Qian, YANG Yong-qing. Sugarcane mosaic virus infection of model plants Brachypodium distachyon and Nicotiana benthamiana[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2294-2301.
[5] YANG Hai-ming, WANG Wei, WANG Zhi-yue, YANG Zhi, WAN Yan, HOU Bang-hong, HUANG Kaihua, LU Hao. Effects of early energy and protein restriction on growth performance, clinical blood parameters, carcass yield, and tibia parameters of broilers[J]. >Journal of Integrative Agriculture, 2016, 15(8): 1825-1832.
[6] José A Reyes-Gutiérrez, Oziel D Monta?ez-Valdez, Ramón Rodríguez-Macias, Mario Ruíz-López, Eduardo Salcedo-Pérez, Cándido E Guerra-Medina. Effect of a bacterial inoculum and additive on dry matter in situ degradability of sugarcane silage[J]. >Journal of Integrative Agriculture, 2015, 14(3): 497-502.
[7] Nahla A Abdel-Aziz, Mounir El-Adawy, Maria A Mariezcurrena-Berasain, Abdelfattah Z M Salem, Jaime Olivares-Pérez, Ahmed E Kholif, Borhami E Borhami. Effects of exogenous enzymes, Lactobacillus acidophilus or their combination on feed performance response and carcass characteristics of rabbits fed sugarcane bagasse[J]. >Journal of Integrative Agriculture, 2015, 14(3): 544-549.
[8] Laura Moreno-Camarena, Ignacio Domínguez-Vara, José Bórquez-Gastelum, Juan Sánchez-Torres, Juan Pinos-Rodríguez, Antonia Mariezcurrena-Berasain, Ernesto Morales-Almaráz, Abdelfattah Z M Salem. Effects of organic chromium supplementation to finishing lambs diet on growth performance, carcass characteristics and meat quality[J]. >Journal of Integrative Agriculture, 2015, 14(3): 567-574.
[9] LIU Xin, WANG Li-gang, LIANG Jing, YAN Hua, ZHAO Ke-bin, LI Na, ZHANG Long-chao, WANGLi-xian . Genome-Wide Association Study for Certain Carcass Traits and Organ Weights in a Large White×Minzhu Intercross Porcine Population[J]. >Journal of Integrative Agriculture, 2014, 13(12): 2721-2730.
[10] QI Yong-wen, PANYong-bao , LAO Fang-ye, ZHANG Chui-ming, FAN Li-na, HE Hui-yi, LIU Rui, WANG Qin-nan, LIU Shao-mou, LIU Fu-ye, LI Qi-wei , DENG Hai-hua. GeneticStructureandDiversityofParentalCultivars Involved inChinaMainland Sugarcane Breeding Programs as Inferred from DNA Microsatellites[J]. >Journal of Integrative Agriculture, 2012, 12(11): 1794-1803.
No Suggested Reading articles found!