Aldersey J E, Sonstegard T S, Williams J L, Bottema C D K. 2020. Understanding the effects of the bovine POLLED variants. Animal Genetics, 51,166–176.
Allais-Bonnet A, Grohs C, Medugorac I, Krebs S, Djari A, Graf A, Fritz S, Seichter D, Baur A, Russ I, Bouet S, Rothammer S, Wahlberg P, Esquerré D, Hoze C, Boussaha M, Weiss B, Thépot D, Fouilloux M N, Rossignol M N, van Marle-Köster E. 2013. Novel insights into the bovine polled phenotype and horn ontogenesis in Bovidae. PLoS ONE, 8, e63512.
Bae S, Park J, Kim J S. 2014. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics, 30, 1473–1475.
Barrangou R, and Doudna J. 2016. Applications of CRISPR technologies in research and beyond. Nature Biotechnology, 34, 933–941.
Bergh A, Söder O. 2007. Studies of cryptorchidism in experimental animal models. Acta Paediatr, 96, 617–621.
Concordet J P, Haeussler M. 2018. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Research, 46, W242–W245.
Dove W F. 1935. The physiology of horn growth: A study of the morphogenesis, the interaction of tissues, and the evolutionary processes of a mendelian recessive character by means of transplantation of tissues. Journal of Experimental Zoology, 69, 347–405.
Gorlov I P, Kamat A, Bogatcheva N V, Jones E, Lamb D J, Truong A, Bishop C E, McElreavey K, Agoulnik A I. 2002. Mutations of the GREAT gene cause cryptorchidism. Human Molecular Genetics, 11, 2309–2318.
Kijas J W, Hadfield T, Naval Sanchez M, Cockett N. 2016. Genome-wide association reveals the locus responsible for four-horned ruminant. Animal Genetics, 47, 258–262.
Lin M, Whitmire S, Chen J, Farrel A, Shi X, Guo J T. 2017. Effects of short indels on protein structure and function in human genomes. Scientific Reports, 7, 9313.
Luan Y, Wu S, Wang M, Pu Y, Zhao Q, Ma Y, Jiang L, He X. 2023. Identification of critical genes for ovine horn development based on transcriptome during the embryonic period. Biology (Basel), 12, 915.
Lühken G, Krebs S, Rothammer S, Küpper J, Mioč B, Russ I, Medugorac I. 2016. The 1.78-kb insertion in the 3´-untranslated region of RXFP2 does not segregate with horn status in sheep breeds with variable horn status. Genetics Selection Evolution, 48, 78.
Pan Z, Li S, Liu Q, Wang Z, Zhou Z, Di R, Miao B, Hu W, Wang X, Hu X, Xu Z, Wei D, He X, Yuan L, Guo X, Liang B, Wang R, Li X, Cao X, Dong X, et al. 2018. Whole-genome sequences of 89 Chinese sheep suggest role of RXFP2 in the development of unique horn phenotype as response to semi-feralization. GigaScience, 7, giy019.
Wang Y, Zhang C, Wang N, Li Z, Heller R, Liu R, Zhao Y, Han J, Pan X, Zheng Z, Dai X, Chen C, Dou M, Peng S, Chen X, Liu J, Li M, Wang K, Liu C, Lin Z, et al. 2019. Genetic basis of ruminant headgear and rapid antler regeneration. Science, 364, eaav6335.
Wiedemar N, and Drögemüller C. 2015. A 1.8-kb insertion in the 3´-UTR of RXFP2 is associated with polledness in sheep. Animal Genetics, 46, 457–461.
Wiener D J, Wiedemar N, Welle M M, Drögemüller C. 2015. Novel features of the prenatal horn bud development in cattle (Bos taurus). PLoS ONE, 10, e0127691.
Xie S, Shen B, Zhang C, Huang X, Zhang Y. 2014. sgRNAcas9: A software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS ONE, 9, e100448.
Yuan F P, Li X, Lin J, Schwabe C, Büllesbach E E, Rao C V, Lei Z M. 2010. The role of RXFP2 in mediating androgen-induced inguinoscrotal testis descent in LH receptor knockout mice. Reproduction, 139, 759–769.
Zhou S, Ding Y, Liu J, Liu Y, Zhao X, Li G, Zhang C, Li C, Wang Y, Kalds P, Gao Y, Zong B, Huang X, Huang S, Yu H, Kou Q, Petersen B, Huang X, Wang X, Ma B, Chen Y. 2020. Highly efficient generation of sheep with a defined FecBB mutation via adenine base editing. Genetics Selection Evolution, 52, 35.
|