Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (5): 1494-1506    DOI: 10.1016/j.jia.2023.10.036
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |

Fine-mapping of a candidate gene for web blotch resistance in Arachis hypogaea L.

Xiaohui Wu1, 2*, Mengyuan Zhang4*, Zheng Zheng2#, Ziqi Sun2, Feiyan Qi2, Hua Liu2, Juan Wang2, Mengmeng Wang2, Ruifang Zhao2, Yue Wu2, Xiao Wang2, Hongfei Liu2, Wenzhao Dong2, Xinyou Zhang2, 3# 

1 College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China

2 Henan Academy of Agricultural Sciences/Henan Academy of Crop Molecular Breeding/Key Laboratory of Oil Crops in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory for Oil Crop Improvement, Zhengzhou 450002, China

3 The Shennong Laboratory, Zhengzhou 450002, China 4 Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu 476000, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

花生是全球重要的油料作物。网斑病是影响花生产量的重要叶面病害之一,在世界范围内造成严重的产量损失。培育抗斑病花生品种被认为是减少因网斑病造成的产量损失的最有效和经济可行的方法。在目前的研究中,采用下一代测序的批量分离分析BSA-seq方法分析了一个F2:3分离群体,并确定了与网斑病抗性相关的候选基因组区间。利用竞争等位基因特异性PCRKASP标记对候选基因组区间进行精细定位,在16号染色体上发现了一个新的网斑病抗性相关区间,全长约169 kb。该区域包含4个注释基因,其中只有Arahy.35VVQ3在两亲本之间的编码区存在非同义的单核苷酸多态性。与该基因连锁的两个标记(chr16.12872635Chr16.12966357)72个随机选择的RIL重组品系证明的花生网斑病抗性共分离,可用于花生品种的标记辅助育种。



Abstract  Peanut (Arachis hypogaea L.) is a globally important oil crop.  Web blotch is one of the most important foliar diseases affecting peanut, which results in serious yield losses worldwide.  Breeding web blotch-resistant peanut varieties is the most effective and economically viable method for minimizing yield losses due to web blotch.  In the current study, a bulked segregant analysis with next-generation sequencing was used to analyze an F2:3 segregating population and identify candidate loci related to web blotch resistance.  Based on the fine-mapping of the candidate genomic interval using kompetitive allele-specific PCR (KASP) markers, we identified a novel web blotch resistance-related locus spanning approximately 169 kb on chromosome 16.  This region included four annotated genes, of which only Arahy.35VVQ3 had a non-synonymous single nucleotide polymorphism in the coding region between the two parents.  Two markers (Chr.16.12872635 and Chr.16.12966357) linked to this gene were shown to be co-segregated with the resistance of peanut web blotch by 72 randomly selected recombinant inbred lines (RIL), which could be used in marker-assisted breeding of resistant peanut varieties.
Keywords:  peanut web blotch        bulked segregant analysis        KASP markers        resistant gene   
Received: 31 July 2023   Accepted: 25 September 2023
Fund: This work was supported by the Key Research Project of the Shennong Laboratory, China (SN01-2022-03), the Henan Provincial Science and Technology R&D Program Joint Fund (Superiority Discipline Cultivation) Project, China (222301420100), the Major Science and Technology Projects of Henan Province, China (221100110300), the China Agriculture Research System of MOF and MARA (CARS-13), the Henan Provincial Agriculture Research System, China (S2012-5), the Outstanding Young Scientists of Henan Academy of Agricultural Sciences, China (2022YQ16), and the Independent Innovation Project of the Henan Academy of Agricultural Sciences, China (2023ZC093). 
About author:  Xiaohui Wu, E-mail: wuxiaohui8688@163.com; Mengyuan Zhang, E-mail: 1799753561@qq.com; #Correspondence Zheng Zheng, Tel: +86-373-7366696, E-mail: zheng.zheng@live.com; Xinyou Zhang, Tel: +86-371-65729560, E-mail: haasxinyou@163.com * These authors contributed equally to this study.

Cite this article: 

Xiaohui Wu, Mengyuan Zhang, Zheng Zheng, Ziqi Sun, Feiyan Qi, Hua Liu, Juan Wang, Mengmeng Wang, Ruifang Zhao, Yue Wu, Xiao Wang, Hongfei Liu, Wenzhao Dong, Xinyou Zhang. 2024.

Fine-mapping of a candidate gene for web blotch resistance in Arachis hypogaea L. . Journal of Integrative Agriculture, 23(5): 1494-1506.

Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M. 2012. Genome sequencing reveals agronomically important loci in rice using MutMap. Nature Biotechnology, 30, 174–178.

Aveskamp M, De Gruyter J, Woudenberg J, Verkley G, Crous P W. 2010. Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera. Studies in Mycology, 65, 1–60.

Bertioli D J, Cannon S B, Froenicke L, Huang G, Farmer A D, Cannon E K, Liu X, Gao D, Clevenger J, Dash S. 2016. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nature Genetics, 48, 438–446.

Bertioli D J, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Leal-Bertioli S, Ren L, Farmer A D, Pandey M K. 2019. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nature Genetics, 51, 877–884.

Bodoira R, Cittadini M C, Velez A, Rossi Y, Montenegro M, Martínez M, Maestri D. 2022. An overview on extraction, composition, bioactivity and food applications of peanut phenolics. Food Chemistry, 381, 132250.

Bolger A M, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30, 2114–2120.

Cao Y, Diao Q, Chen Y, Jin H, Zhang Y, Zhang H. 2021. Development of KASP markers and identification of a QTL underlying powdery mildew resistance in melon (Cucumis melo L.) by bulked segregant analysis and RNA-seq. Frontiers in Plant Science, 11, 1819.

Chen Q, Jiang J, Zhang G, Cai L, Crous P W. 2015. Resolving the Phoma enigma. Studies in Mycology, 82, 137–217.

Clevenger J, Chu Y, Chavarro C, Botton S, Culbreath A, Isleib T G, Holbrook C, Ozias-Akins P. 2018. Mapping late leaf spot resistance in peanut (Arachis hypogaea) using QTL-seq reveals markers for marker-assisted selection. Frontiers in Plant Science, 9, 83.

Gao Y, Zhou S, Huang Y, Zhang B, Xu Y, Zhang G, Lakshmanan P, Yang R, Zhou H, Huang D. 2022. Quantitative trait loci mapping and development of KASP marker smut screening assay using high-density genetic map and bulked segregant RNA sequencing in sugarcane (Saccharum spp.). Frontiers in Plant Science, 12, 796189.

Grimm K D S, Porter L D. 2021. KASP markers reveal established and novel sources of resistance to Pea Seedborne Mosaic Virus in pea genetic resources. Plant Disease, 105, 2503–2508.

Guo J, Qi F, Qin L, Zhang M, Sun Z, Li H, Cui M, Zhang M, Li C, Li X. 2023. Mapping of a QTL associated with sucrose content in peanut kernels using BSA-seq. Frontiers in Genetics, 13, 1089389.

Hill J T, Demarest B L, Bisgrove B W, Gorsi B, Su Y C, Yost H J. 2013. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Research, 23, 687–697.

Hiremath P J, Kumar A, Penmetsa R V, Farmer A, Schlueter J A, Chamarthi S K, Whaley A M, Carrasquilla-Garcia N, Gaur P M, Upadhyaya H D. 2012. Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes. Plant Biotechnology Journal, 10, 716–732.

Houtgast E J, Sima V M, Bertels K, Al-Ars Z. 2018. Hardware acceleration of BWA-MEM genomic short read mapping for longer read lengths. Computational Biology and Chemistry, 75, 54–64.

Hu F C, Zhe C, Wang X H, Wang J B, Fan H Y, Qin Y H, Zhao J T, Hu G B. 2021. Construction of high-density SNP genetic maps and QTL mapping for dwarf-related traits in Litchi chinensis Sonn. Journal of Integrative Agriculture, 20, 2900–2913.

Janila P, Variath M T, Pandey M K, Desmae H, Motagi B N, Okori P, Manohar S S, Rathnakumar A, Radhakrishnan T, Liao B. 2016. Genomic tools in groundnut breeding program: Status and perspectives. Frontiers in Plant Science, 7, 289.

Jiang L, Hua D, Wang Z, Xu S. 2010. Aqueous enzymatic extraction of peanut oil and protein hydrolysates. Food and Bioproducts Processing, 88, 233–238.

Kim D, Langmead B, Salzberg S L. 2015. HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 12, 357–360.

Kosová K, Chrpová J, Šantrůček J, Hynek R, Štěrbová L, Vítámvás P, Bradová J, Prášil I T. 2017. The effect of Fusarium culmorum infection and deoxynivalenol (DON) application on proteome response in barley cultivars Chevron and Pedant. Journal of Proteomics, 169, 112–124.

Li J, Li Y, Jiao F, Wang Y. 1991. Studies the fungus of peanut web blotch in Shanxi Province. Peanut Science Technology, 1, 1–6.

Li S, Xue X, Gao M, Wang N, Cui X, Sang S, Fan W, Wang Z. 2021. Genome resource for peanut web blotch causal agent Peyronellaea arachidicola strain YY187. Plant Disease, 105, 1177–1178.

Li S J, Gao M, Wang N, Fan W W, Sang S L, Yang G, Li H Y, Cui X W, Wang Z Y. 2022. Differences in conidia of peanut web blotch pathogen and its pathogenicity analysis. Chinese Journal of Oil Crop Sciences, 44, 1341–1348. (in Chinese)

Liu H, Qin L, Du P, Sun Z Q, Qi F Y, Zhang Z X, Xu J, Han S Y, Dai X D, Dong W Z, Zhang X Y. 2022. Genetic analysis of peanut web blotch resistance based on multi-generation seg-regation population. Jiangsu Journal of Agricultural Sciences, 38, 326–333. (in Chinese)

Liu H, Sun Z, Zhang X, Qin L, Qi F, Wang Z, Du P, Xu J, Zhang Z, Han S. 2020. QTL mapping of web blotch resistance in peanut by high-throughput genome-wide sequencing. BMC Plant Biology, 20, 1–11.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods, 25, 402–408.

Lu B, Chen D X, Zhang X, Xu M L, Yan H H, Liang C, Yu J L, Liu T J, Dong W B, Chi Y C. 2018. A field efficacy trial on peanut web blotch control. Journal of Peanut Science, 47, 69–73. (in Chinese)

Luo H, Pandey M K, Khan A W, Wu B, Guo J, Ren X, Zhou X, Chen Y, Chen W, Huang L. 2019. Next-generation sequencing identified genomic region and diagnostic markers for resistance to bacterial wilt on chromosome B02 in peanut (Arachis hypogaea L.). Plant Biotechnology Journal, 17, 2356–2369.

Magwene P M, Willis J H, Kelly J K. 2011. The statistics of bulk segregant analysis using next generation sequencing. PLoS Computational Biology, 7, e1002255.

Meng L, Li H, Zhang L, Wang J. 2015. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal, 3, 269–283.

Michelmore R W, Paran I, Kesseli R. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America, 88, 9828–9832.

Ochar K, Su B H, Zhou M M, Liu Z X, Gao H W, Lamlom S F, Qiu L J. 2022. Identification of the genetic locus associated with the crinkled leaf phenotype in a soybean (Glycine max L.) mutant by BSA-Seq technology. Journal of Integrative Agriculture, 21, 3524–3539.

Pan J, Zhou X, Ahmad N, Zhang K, Tang R, Zhao H, Jiang J, Tian M, Li C, Li A. 2022. BSA-seq and genetic mapping identified candidate genes for branching habit in peanut. Theoretical and Applied Genetics, 135, 4457–4468.

Pandey M K, Khan A W, Singh V K, Vishwakarma M K, Shasidhar Y, Kumar V, Garg V, Bhat R S, Chitikineni A, Janila P. 2017. QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.). Plant Biotechnology Journal, 15, 927–941.

Pettit R E, Philley G L, Smith D H, Taber R A. 1986. Peanut web blotch: II symptoms and host range of pathogen. Peanut Science, 13, 27–30.

Prakash V, Singh A, Singh A K, Dalmay T, Chakraborty S. 2020. Tobacco RNA-dependent RNA polymerase 1 affects the expression of defence-related genes in Nicotiana benthamiana upon Tomato leaf curl Gujarat virus infection. Planta, 252, 1–14.

Qin H, Feng S, Chen C, Guo Y, Knapp S, Culbreath A, He G, Wang M L, Zhang X, Holbrook C C. 2012. An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theoretical and Applied Genetics, 124, 653–664.

Rasheed A, Wen W, Gao F, Zhai S, Jin H, Liu J, Guo Q, Zhang Y, Dreisigacker S, Xia X. 2016. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theoretical and Applied Genetics, 129, 1843–1860.

Rédei G P. 2008. Encyclopedia of Genetics, Genomics, Proteomics and Informatics. Springer, the Netherlands. pp. 445–923.

Sandhu N, Singh J, Singh G, Sethi M, Singh M P, Pruthi G, Raigar O P, Kaur R, Sarao P S, Lore J S. 2022. Development and validation of a novel core set of KASP markers for the traits improving grain yield and adaptability of rice under direct-seeded cultivation conditions. Genomics, 114, 110269.

Schlötterer C. 2004. The evolution of molecular markers - Just a matter of fashion? Nature Reviews Genetics, 5, 63–69.

Semagn K, Babu R, Hearne S, Olsen M. 2014. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): Overview of the technology and its application in crop improvement. Molecular Breeding, 33, 1–14.

Shi Y, Sun H, Wang X, Jin W, Chen Q, Yuan Z, Yu H. 2019. Physiological and transcriptomic analyses reveal the molecular networks of responses induced by exogenous trehalose in plant. PLoS ONE, 14, e0217204.

Sun H, Ren L, Qi F, Wang H, Yu S, Sun Z, Huang B, Han S, Shi P, Wang Y. 2023. BSA-Seq approach identified candidate region and diagnostic marker for chilling tolerance of high oleic acid peanut at germination stage. Agronomy, 13, 18.

Sun Z Q, Cheng Y J, Qi F Y, Zhang M Y, Tian M D, Wang J, Wu X H, Huang B Y, Dong W Z, Zhang X Y. 2022. Resistance of peanut to web blotch caused by Phoma arachidicola is related to papillae formation and the hypersensitive response. Plant Pathology, 71, 1921–1931.

Taber R, Pettit R, Philley G. 1984. Peanut web blotch: I. cultural characteristics and identity of causal fungus. Peanut Science, 11, 109–114.

Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S. 2013. QTL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. The Plant Journal, 74, 174–183.

Wang F Q, Fan X C, Zhang Y, Lei S, Liu C H, Jiang J F. 2022. Establishment and application of an SNP molecular identification system for grape cultivars. Journal of Integrative Agriculture, 21, 1044–1057.

Wang S Y, Li L N, Fu L Y, Hua L, Li Q, Cui C H, Miao L J, Zhang Z X, Wei G, Dong W Z. 2021. Development and characterization of new allohexaploid resistant to web blotch in peanut. Journal of Integrative Agriculture, 20, 55–64.

Wang Z, Wang S, Li H, Yuan H. 1993. Studies the fungus of peanut web blotch in Henan Province. Journal of Henan Agricultural Sciences, 7, 23–25. (in Chinese)

Zhan H, Wang Y, Zhang D, Du C, Zhang X, Liu X, Wang G, Zhang S. 2021. RNA-seq bulked segregant analysis combined with KASP genotyping rapidly identified PmCH7087 as responsible for powdery mildew resistance in wheat. The Plant Genome, 14, e20120.

Zhang K, Yuan M, Xia H, He L, Ma J, Wang M, Zhao H, Hou L, Zhao S, Li P. 2022. BSA-seq and genetic mapping reveals AhRt2 as a candidate gene responsible for red testa of peanut. Theoretical and Applied Genetics, 135, 1529–1540.

Zhang X, Xu M, Wu J, Dong W, Chen D, Wang L, Chi Y. 2019. Draft genome sequence of Phoma arachidicola Wb2 causing peanut web blotch in China. Current Microbiology, 76, 200–206.

Zhou Y, Zhang X. 2016. Research progress of peanut web spot in Liaoning Province. China Science and Technology Investment, 15, 273. (in Chinese)

Zou C, Wang P, Xu Y. 2016. Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnology Journal, 14, 1941–1955.

No related articles found!
No Suggested Reading articles found!