Abe A,
Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K,
Mitsuoka C, Tamiru M. 2012. Genome sequencing reveals agronomically important
loci in rice using MutMap. Nature Biotechnology, 30,
174–178.
Aveskamp
M, De Gruyter J, Woudenberg J, Verkley G, Crous P W. 2010. Highlights of the
Didymellaceae: A polyphasic approach to characterise Phoma and related
pleosporalean genera. Studies in Mycology, 65,
1–60.
Bertioli D
J, Cannon S B, Froenicke L, Huang G, Farmer A D, Cannon E K, Liu X, Gao D,
Clevenger J, Dash S. 2016. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nature Genetics, 48, 438–446.
Bertioli D
J, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Leal-Bertioli S, Ren L,
Farmer A D, Pandey M K. 2019. The genome sequence of segmental allotetraploid
peanut Arachis hypogaea. Nature Genetics, 51,
877–884.
Bodoira R,
Cittadini M C, Velez A, Rossi Y, Montenegro M, Martínez M, Maestri D. 2022. An
overview on extraction, composition, bioactivity and food applications of
peanut phenolics. Food Chemistry, 381, 132250.
Bolger A
M, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina
sequence data. Bioinformatics, 30, 2114–2120.
Cao Y,
Diao Q, Chen Y, Jin H, Zhang Y, Zhang H. 2021. Development of KASP markers and
identification of a QTL underlying powdery mildew resistance in melon (Cucumis
melo L.) by bulked segregant analysis and RNA-seq. Frontiers in Plant Science, 11, 1819.
Chen Q,
Jiang J, Zhang G, Cai L, Crous P W. 2015. Resolving the Phoma enigma. Studies in Mycology, 82, 137–217.
Clevenger
J, Chu Y, Chavarro C, Botton S, Culbreath A, Isleib T G, Holbrook C,
Ozias-Akins P. 2018. Mapping late leaf spot resistance in peanut (Arachis hypogaea) using QTL-seq reveals markers for marker-assisted selection. Frontiers in Plant Science, 9, 83.
Gao Y,
Zhou S, Huang Y, Zhang B, Xu Y, Zhang G, Lakshmanan P, Yang R, Zhou H, Huang D.
2022. Quantitative trait loci mapping and development of KASP marker smut
screening assay using high-density genetic map and bulked segregant RNA
sequencing in sugarcane (Saccharum spp.). Frontiers in Plant Science, 12, 796189.
Grimm K D
S, Porter L D. 2021. KASP markers reveal established and novel sources of
resistance to Pea Seedborne Mosaic Virus in pea genetic resources. Plant Disease, 105, 2503–2508.
Guo J, Qi
F, Qin L, Zhang M, Sun Z, Li H, Cui M, Zhang M, Li C, Li X. 2023. Mapping of a
QTL associated with sucrose content in peanut kernels using BSA-seq. Frontiers in Genetics, 13, 1089389.
Hill J T,
Demarest B L, Bisgrove B W, Gorsi B, Su Y C, Yost H J. 2013. MMAPPR: mutation
mapping analysis pipeline for pooled RNA-seq. Genome Research, 23,
687–697.
Hiremath P
J, Kumar A, Penmetsa R V, Farmer A, Schlueter J A, Chamarthi S K, Whaley A M,
Carrasquilla-Garcia N, Gaur P M, Upadhyaya H D. 2012. Large-scale development
of cost-effective SNP marker assays for diversity assessment and genetic
mapping in chickpea and comparative mapping in legumes. Plant Biotechnology Journal, 10, 716–732.
Houtgast E
J, Sima V M, Bertels K, Al-Ars Z. 2018. Hardware acceleration of BWA-MEM
genomic short read mapping for longer read lengths. Computational Biology and Chemistry, 75, 54–64.
Hu F C,
Zhe C, Wang X H, Wang J B, Fan H Y, Qin Y H, Zhao J T, Hu G B. 2021.
Construction of high-density SNP genetic maps and QTL mapping for dwarf-related
traits in Litchi chinensis Sonn. Journal of Integrative Agriculture, 20, 2900–2913.
Janila P,
Variath M T, Pandey M K, Desmae H, Motagi B N, Okori P, Manohar S S,
Rathnakumar A, Radhakrishnan T, Liao B. 2016. Genomic tools in groundnut
breeding program: Status and perspectives. Frontiers in Plant Science, 7, 289.
Jiang L,
Hua D, Wang Z, Xu S. 2010. Aqueous enzymatic extraction of peanut oil and
protein hydrolysates. Food and Bioproducts Processing, 88, 233–238.
Kim D,
Langmead B, Salzberg S L. 2015. HISAT: A fast spliced aligner with low memory
requirements. Nature Methods, 12, 357–360.
Kosová K,
Chrpová J, Šantrůček J, Hynek R, Štěrbová L, Vítámvás P, Bradová J, Prášil I T.
2017. The effect of Fusarium culmorum infection and deoxynivalenol (DON)
application on proteome response in barley cultivars Chevron and Pedant. Journal of Proteomics, 169, 112–124.
Li J, Li
Y, Jiao F, Wang Y. 1991. Studies the fungus of peanut web blotch in Shanxi
Province. Peanut Science Technology, 1, 1–6.
Li S, Xue
X, Gao M, Wang N, Cui X, Sang S, Fan W, Wang Z. 2021. Genome resource for
peanut web blotch causal agent Peyronellaea arachidicola strain
YY187. Plant Disease, 105, 1177–1178.
Li S J,
Gao M, Wang N, Fan W W, Sang S L, Yang G, Li H Y, Cui X W, Wang Z Y. 2022.
Differences in conidia of peanut web blotch pathogen and its pathogenicity
analysis. Chinese Journal of Oil Crop Sciences, 44, 1341–1348. (in Chinese)
Liu H, Qin
L, Du P, Sun Z Q, Qi F Y, Zhang Z X, Xu J, Han S Y, Dai X D, Dong W Z, Zhang X
Y. 2022. Genetic analysis of peanut web blotch resistance based on
multi-generation seg-regation population. Jiangsu Journal of Agricultural Sciences, 38, 326–333. (in Chinese)
Liu H, Sun
Z, Zhang X, Qin L, Qi F, Wang Z, Du P, Xu J, Zhang Z, Han S. 2020. QTL mapping
of web blotch resistance in peanut by high-throughput genome-wide sequencing. BMC Plant Biology, 20, 1–11.
Livak K J,
Schmittgen T D. 2001. Analysis of relative gene expression data using real-time
quantitative PCR and the 2−ΔΔCt method. Methods, 25,
402–408.
Lu B, Chen
D X, Zhang X, Xu M L, Yan H H, Liang C, Yu J L, Liu T J, Dong W B, Chi Y C.
2018. A field efficacy trial on peanut web blotch control. Journal of Peanut Science, 47, 69–73. (in Chinese)
Luo H,
Pandey M K, Khan A W, Wu B, Guo J, Ren X, Zhou X, Chen Y, Chen W, Huang L.
2019. Next-generation sequencing identified genomic region and diagnostic
markers for resistance to bacterial wilt on chromosome B02 in peanut (Arachis hypogaea L.). Plant Biotechnology Journal, 17,
2356–2369.
Magwene P
M, Willis J H, Kelly J K. 2011. The statistics of bulk segregant analysis using
next generation sequencing. PLoS Computational Biology, 7,
e1002255.
Meng L, Li
H, Zhang L, Wang J. 2015. QTL IciMapping: Integrated software for genetic
linkage map construction and quantitative trait locus mapping in biparental
populations. The Crop Journal, 3, 269–283.
Michelmore
R W, Paran I, Kesseli R. 1991. Identification of markers linked to
disease-resistance genes by bulked segregant analysis: A rapid method to detect
markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of
the United States of America, 88, 9828–9832.
Ochar K,
Su B H, Zhou M M, Liu Z X, Gao H W, Lamlom S F, Qiu L J. 2022. Identification
of the genetic locus associated with the crinkled leaf phenotype in a soybean (Glycine max L.) mutant by BSA-Seq technology. Journal of Integrative Agriculture, 21, 3524–3539.
Pan J,
Zhou X, Ahmad N, Zhang K, Tang R, Zhao H, Jiang J, Tian M, Li C, Li A. 2022.
BSA-seq and genetic mapping identified candidate genes for branching habit in
peanut. Theoretical and Applied Genetics, 135,
4457–4468.
Pandey M
K, Khan A W, Singh V K, Vishwakarma M K, Shasidhar Y, Kumar V, Garg V, Bhat R
S, Chitikineni A, Janila P. 2017. QTL-seq approach identified genomic regions
and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.). Plant Biotechnology Journal, 15,
927–941.
Pettit R
E, Philley G L, Smith D H, Taber R A. 1986. Peanut web blotch: II symptoms and
host range of pathogen. Peanut Science, 13, 27–30.
Prakash V,
Singh A, Singh A K, Dalmay T, Chakraborty S. 2020. Tobacco RNA-dependent RNA
polymerase 1 affects the expression of defence-related genes in Nicotiana benthamiana upon Tomato leaf curl Gujarat virus infection. Planta, 252, 1–14.
Qin H,
Feng S, Chen C, Guo Y, Knapp S, Culbreath A, He G, Wang M L, Zhang X, Holbrook
C C. 2012. An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theoretical and Applied Genetics, 124, 653–664.
Rasheed A,
Wen W, Gao F, Zhai S, Jin H, Liu J, Guo Q, Zhang Y, Dreisigacker S, Xia X.
2016. Development and validation of KASP assays for genes underpinning key
economic traits in bread wheat. Theoretical and Applied Genetics, 129, 1843–1860.
Rédei G P.
2008. Encyclopedia of Genetics, Genomics, Proteomics and Informatics. Springer, the Netherlands. pp. 445–923.
Sandhu N,
Singh J, Singh G, Sethi M, Singh M P, Pruthi G, Raigar O P, Kaur R, Sarao P S,
Lore J S. 2022. Development and validation of a novel core set of KASP markers
for the traits improving grain yield and adaptability of rice under
direct-seeded cultivation conditions. Genomics, 114, 110269.
Schlötterer
C. 2004. The evolution of molecular markers - Just a matter of fashion? Nature Reviews Genetics, 5, 63–69.
Semagn K,
Babu R, Hearne S, Olsen M. 2014. Single nucleotide polymorphism genotyping
using Kompetitive Allele Specific PCR (KASP): Overview of the technology and
its application in crop improvement. Molecular Breeding, 33,
1–14.
Shi Y, Sun
H, Wang X, Jin W, Chen Q, Yuan Z, Yu H. 2019. Physiological and transcriptomic
analyses reveal the molecular networks of responses induced by exogenous
trehalose in plant. PLoS ONE, 14, e0217204.
Sun H, Ren
L, Qi F, Wang H, Yu S, Sun Z, Huang B, Han S, Shi P, Wang Y. 2023. BSA-Seq
approach identified candidate region and diagnostic marker for chilling
tolerance of high oleic acid peanut at germination stage. Agronomy, 13,
18.
Sun Z Q,
Cheng Y J, Qi F Y, Zhang M Y, Tian M D, Wang J, Wu X H, Huang B Y, Dong W Z,
Zhang X Y. 2022. Resistance of peanut to web blotch caused by Phoma arachidicola is related to papillae formation and the hypersensitive response. Plant Pathology, 71, 1921–1931.
Taber R,
Pettit R, Philley G. 1984. Peanut web blotch: I. cultural characteristics and
identity of causal fungus. Peanut Science, 11, 109–114.
Takagi H,
Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru
M, Takuno S. 2013. QTL-seq: Rapid mapping of quantitative trait loci in rice by
whole genome resequencing of DNA from two bulked populations. The Plant Journal, 74, 174–183.
Wang F Q,
Fan X C, Zhang Y, Lei S, Liu C H, Jiang J F. 2022. Establishment and
application of an SNP molecular identification system for grape cultivars. Journal of Integrative Agriculture, 21, 1044–1057.
Wang S Y,
Li L N, Fu L Y, Hua L, Li Q, Cui C H, Miao L J, Zhang Z X, Wei G, Dong W Z.
2021. Development and characterization of new allohexaploid resistant to web
blotch in peanut. Journal of Integrative Agriculture, 20, 55–64.
Wang Z,
Wang S, Li H, Yuan H. 1993. Studies the fungus of peanut web blotch in Henan
Province. Journal of Henan Agricultural Sciences, 7, 23–25. (in Chinese)
Zhan H,
Wang Y, Zhang D, Du C, Zhang X, Liu X, Wang G, Zhang S. 2021. RNA-seq bulked
segregant analysis combined with KASP genotyping rapidly identified PmCH7087 as responsible for powdery mildew resistance in wheat. The Plant Genome, 14, e20120.
Zhang K,
Yuan M, Xia H, He L, Ma J, Wang M, Zhao H, Hou L, Zhao S, Li P. 2022. BSA-seq
and genetic mapping reveals AhRt2 as a candidate gene responsible for
red testa of peanut. Theoretical and Applied Genetics, 135, 1529–1540.
Zhang X,
Xu M, Wu J, Dong W, Chen D, Wang L, Chi Y. 2019. Draft genome sequence of Phoma arachidicola Wb2 causing peanut web blotch in China. Current Microbiology, 76, 200–206.
Zhou Y,
Zhang X. 2016. Research progress of peanut web spot in Liaoning Province. China Science and Technology Investment, 15, 273.
(in Chinese)
Zou C,
Wang P, Xu Y. 2016. Bulked sample analysis in genetics, genomics and crop
improvement. Plant Biotechnology Journal, 14,
1941–1955.
|