, OsAUX1 OsTB1
," />  , OsAUX1 OsTB1
,"/>  , OsAUX1 OsTB1
,"/> 生长素转运基因OsAUX1调控水稻分蘖发育
Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (5): 1454-1467    DOI: 10.1016/j.jia.2023.05.041
Special Issue: 水稻遗传育种合辑Rice Genetics · Breeding · Germplasm Resources
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |

The auxin transporter OsAUX1 regulates tillering in rice (Oryza sativa)

Luqi Jia1, Yongdong Dai1, Ziwei Peng1, Zhibo Cui1, Xuefei Zhang1, Yangyang Li1, Weijiang Tian1, Guanghua He1, Yun Li2, Xianchun Sang1#

1 Chongqing Key Laboratory of Crop Molecular Improvement/Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China

2 Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences/Key Laboratory of Southwest Rice Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Deyang 618000, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  分蘖是重要农艺性状,其通过影响有效穗从而进一步影响水稻(Oryza sativa)产量。生长素在分蘖发育中起关键作用。本文鉴定一个多蘖半矮化突变体(htsd1),其根部表现出生长素缺陷的侧根侧根密度降低角度增大等特征。突变体htsd1对生长素的敏感性降低,外施生长素可部分抑制分蘖发育htsd1突变性状调控基因为LOC_Os01g63770该基因编码生长素转运蛋白OsAUX1。OsAUX1启动子区域含有大量SPLSQUAMOSA PROMOTER BINDING PROTEIN-LIKE转录因子家族结合位点,鉴定发现SPL7可以直接结合到OsAUX1启动子区域。分蘖负调控关键基因OsTB1TEOSINTE BRANCHED1 htsd1突变体中极显著下降。OsTB1敲除突变体中分蘖数增加,外施生长素可以抑制OsTB1敲除突变体分蘖芽的生长htsd1突变中过表达OsAUX1基因可恢复少蘖表型。这些结果表明,SPL7可以直接结合到OsAUX1启动子区域进而调控OsTB1的表达,从而通过IAA途径调控水稻分蘖数的发育。

Abstract  Tillering is an important agronomic trait of rice (Oryza sativa) that affects the number of effective panicles, thereby affecting yields.  The phytohormone auxin plays a key role in tillering.  Here we identified the high tillering and semi-dwarf 1 (htsd1) mutant with auxin-deficiency root characteristics, such as shortened lateral roots, reduced lateral root density, and enlarged root angles.  htsd1 showed reduced sensitivity to auxin, but the external application of indole-3-acetic acid (IAA) inhibited its tillering.  We identified the mutated gene in htsd1 as AUXIN1 (OsAUX1, LOC_Os01g63770), which encodes an auxin influx transporter.  The promoter sequence of OsAUX1 contains many SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) binding sites, and we demonstrated that SPL7 binds to the OsAUX1 promoter.  TEOSINTE BRANCHED1 (OsTB1), a key gene that negatively regulates tillering, was significantly downregulated in htsd1.  Tillering was enhanced in the OsTB1 knockout mutant, and the external application of IAA inhibited tiller elongation in this mutant.  Overexpressing OsTB1 restored the multi-tiller phenotype of htsd1.  These results suggest that SPL7 directly binds to the OsAUX1 promoter and regulates tillering in rice by altering OsTB1 expression to modulate auxin signaling.
Keywords:  rice (Oryza sativa L.)        tillering        ')" href="#"> indole-3-acetic acid (IAA)        OsAUX1        OsTB1
  
Received: 09 March 2023   Accepted: 05 May 2023
Fund: This work was supported by the National Key Research and Development Program of China (2022YFD1201600), the National Natural Science Foundation of China (32171964) and the Science Fund for Creative Research Groups of Chongqing, China (cstc2021jcyj-cxttX0004).
About author:  Luqi Jia, E-mail: 632063809@qq.com; #Correspondence Xianchun Sang, Tel/Fax: +86-23-68251264, E-mail: sangxianchun@163.com
Service
E-mail this article  | OsAUX1 OsTB1


”. Please open it by linking:https://www.chinaagrisci.com/Jwk_zgnykxen/EN/abstract/abstract554104.shtml" name="neirong">  | OsAUX1 OsTB1


">
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

Luqi Jia, Yongdong Dai, Ziwei Peng, Zhibo Cui, Xuefei Zhang, Yangyang Li, Weijiang Tian, Guanghua He, Yun Li, Xianchun Sang. 2024.

The auxin transporter OsAUX1 regulates tillering in rice (Oryza sativa) . Journal of Integrative Agriculture, 23(5): 1454-1467.

Attia K A, Abdelkhalik A F, Ammar M H, Wei C, Yang J, Lightfoot D A, El-Sayed W M, El-Shemy H A. 2009. Antisense phenotypes reveal a functional expression of OsARF1, an auxin response factor, in transgenic rice. Current Issues in Molecular Biology, 11, 29–34.

Asad R, Ahmad M A, Farah K, Klaus P, Ye L Z, Dai F, Zhang G P. 2023. Advances in studies on the physiological and molecular regulation of barley tillering. Journal of Integrative Agriculture, 22, 1–13.

Basunia M A, Nonhebel H M, Backhouse D, McMillan M. 2021. Localised expression of OsIAA29 suggests a key role for auxin in regulating development of the dorsal aleurone of early rice grains. Planta, 254, 40.

Cardon G, Höhmann S, Klein J, Nettesheim K, Saedler H, Huijser P. 1999. Molecular characterisation of the Arabidopsis SBP-box genes. Gene, 237, 91–104.

Chen Y N, Fan X R, Song W J, Zhang Y L, Xu G H. 2012. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnology Journal, 10, 139–149.

Dai Z Y, Wang J, Yang X F, Lu H, Miao X X, Shi Z Y. 2018. Modulation of plant architecture by the miR156f-OsSPL7-OsGH3.8 pathway in rice. Journal of Experimental Botany, 69, 5117–5130.

Dai Z Y, Wang J, Zhu M L, Miao X X, Shi Z Y. 2016. OsMADS1 represses microRNA172 in elongation of palea/lemma development in rice. Frontiers in Plant Science, 7, 1891.

Domagalska M A, Leyser O. 2011. Signal integration in the control of shoot branching. Nature, 12, 211–221.

Fang Z M, Ji Y Y, Hu J, Guo R K, Sun S Y, Wang X L. 2020. Strigolactones and brassinosteroids antagonistically regulate the stability of the D53-OsBZR1 complex to determine FC1 expression in rice tillering. Molecular Plant, 13, 586–597.

Giri J, Bhosale R, Huang G, Pandey B, Parker H, Zappala S, Yang J, Dievart A, Bureau C, Ljung K, Price A, Rose T, Larrieu A, Mairhofer S, Sturrock C J, White P, Dupuy L, Hawkesford M, Perin C, Liang W, et al. 2018. Rce auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate. Nature Communications, 9, 1408.

Gomez-Roldan V, Fermas S, Brewer P B, Puech-Pagès V, Dun E A, Pillot J P, Letisse F, Matusova R, Danoun S, Portais J C, Bouwmeester H, Bécard G, Beveridge C A, Rameau C, Rochange S F. 2008. Strigolactone inhibition of shoot branching. Nature, 455, 189–194.

Guo F, Han N, Xie Y K, Fang K, Yang Y N, Zhu M Y, Wang J H, Bian H W. 2016. The miR393a/target module regulates seed germination and seedling establishment under submergence in rice (Oryza sativa L.). Plant, Cell & Environment, 39, 2288–2302.

Guo S Y, Xu Y Y, Liu H H, Mao Z W, Zhang C, Ma Y, Zhang Q R, Meng Z, Chong K. 2013. The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nature Communications, 4, 1566.

Hou M M, Luo F F, Wu D X, Zhang X H, Lou M M, Shen D F, Yan M, Mao C Z, Fan X R, Xu G H, Zhang Y L. 2021. OsPIN9, an auxin efflux carrier, is required for the regulation of rice tiller bud outgrowth by ammonium. The New Phytologist, 229, 935–949.

Hurný A, Cuesta C, Cavallari N, Ötvös K, Duclercq J, Dokládal L, Montesinos J C, Gallemí M, Semerádová H, Rauter T, Stenzel I, Persiau G, Benade F, Bhalearo R, Sýkorová E, Gorzsás A, Seche J, Mouille G, Heilmann I, De Jaeger G, et al. 2020. SYNERGISTIC ON AUXIN AND CYTOKININ 1 positively regulates growth and attenuates soil pathogen resistance. Nature Communications, 11, 2170.

Jiang L, Liu X, Xiong G X, Liu H H, Chen F L, Wang L, Meng X B, Liu G F, Yu H, Yuan Y D, Yi W, Zhao L H, Ma H L, He Y Z, Wu Z S, Melcher K, Qian Q, Xu H E, Wang Y H, Li J Y. 2013. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature, 504, 401–405.

Jin L, Qin Q Q, Wang Y, Pu Y Y, Liu L F, Wen X, Ji S Y, Wu J G, Wei C H, Ding B, Li Y. 2016. Rice dwarf virus P2 protein hijacks auxin signaling by directly targeting the rice OsIAA10 protein, enhancing viral infection and disease development. PLoS Pathogens, 12, e1005847.

Jung J H, Ju Y, Seo P J, Lee J H, Park C M. 2012. The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis. The Plant Journal, 69, 577–588.

Jung H R, Lee D K, Choi Y D, Kim J K. 2015. OsIAA6, a member of the rice Aux/IAA gene family, is involved in drought tolerance and tiller outgrowth. Plant Science, 236, 304–312.

Kapulnik Y, Delaux P M, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C, Séjalon-Delmas N, Combier J P, Bécard G, Belausov E, Beeckman T, Dor E, Hershenhorn J, Koltai H. 2011. Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta, 233, 209–216.

Komatsu K, Maekawa M, Ujiie S, Satake Y, Furutani I, Okamoto H, Shimamoto K, Kyozuka J. 2003. LAX and SPA: major regulators of shoot branching in rice. Proceedings of the National Academy of Sciences of the United States of America, 100, 11765–11770.

Li X Y, Qian Q, Fu Z M, Wang Y H, Xiong G S, Zeng D, Wang X Q, Liu X F, Teng S, Hiroshi F J, Yuan M, Luo D, Han B, Li J. 2003. Control of tillering in rice. Nature, 422, 618–621.

Lin H, Wang R X, Qian Q, Yan M X, Meng X B, Fu Z M, Yan C Y, Jiang B, Su Z, Li J Y, Wang Y H. 2009. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. The Plant Cell, 21, 1512–1525.

Liu L H, Ren M M, Peng P, Chun Y, Li L, Zhao J F, Fang J J, Peng L X, Yan J J, Chu J F, Wang Y Q, Yuan S J, Li X Y. 2021. MIT1, encoding a 15-cis-ζ-carotene isomerase, regulates tiller number and stature in rice. Journal of Genetics and Genomics, 48, 88–91.

Liu T Z, Zhang X, Zhang H, Cheng Z J, Liu J, Zhou C L, Luo S, Luo W F, Li S, Xing X X, Chang Y Q, Shi C L, Ren Y L, Zhu S S, Lei C L, Guo X P, Wang J, Zhao Z C, Wang H Y, Zhai H Q, et al. 2022. Dwarf and High Tillering1 represses rice tillering through mediating the splicing of D14 pre-mRNA. The Plant Cell, 34, 3301–3318.

Lu Z F, Yu H, Xiong G S, Wang J, Jiao Y Q, Liu G F, Jing Y H, Meng X B, Hu X M, Qian Q, Fu X D, Wang Y H, Li J Y. 2013. Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture. The Plant Cell, 25, 3743–3759.

Manning K, Tör M, Poole M, Hong Y, Thompson A J, King G J, Giovannoni J J, Seymour G B. 2006. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nature Genetics, 38, 948–952.

Martin R C, Asahina M, Liu P P, Kristof J R, Coppersmith J L, Pluskota W E, Basse G W, Goloviznina N A, Nguyen T T, Martínez-Andújar C, Kumar M B, Pupel P, Nonogaki H. 2010. The microRNA156 and microRNA172 gene regulation cascades at post-germinative stages in Arabidopsis. Seed Science Research, 20, 79–87.

Mirzaei S, Batley J, El-Mellouki T, Liu S, Meksem K, Ferguson B J, Gresshoff P M. 2017. Neodiversification of homeologous CLAVATA1-like receptor kinase genes in soybean leads to distinct developmental outcomes. Scientific Reports, 7, 8878.

Mockaitis K, Estelle M. 2008. Auxin receptors and plant development: A new signaling paradigm. Annual Review of Cell and Developmental Biology, 24, 55–80.

Müller D, Leyser O. 2011. Auxin, cytokinin and the control of shoot branching. Annals of Botany, 107, 1203–1212.

Nodine M D, Bartel D P. 2010. MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Genes & Development, 24, 2678–2692.

Petrásek J, Friml J. 2009. Auxin transport routes in plant development. Development, 136, 2675–2688.

Saier Jr M H. 2000. Families of transmembrane transporters selective for amino acids and their derivatives. Microbiology, 146, 1775–1795.

Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M. 2005. Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant & Cell Physiology 46, 1568–1577.

Schmid M, Uhlenhaut N H, Godard F, Demar M, Bressan R, Weigel D, Lohmann J U. 2003. Dissection of floral induction pathways using global expression analysis. Development, 130, 6001–6012.

Schwarz S, Grande A V, Bujdoso N, Saedler H, Huijser P. 2008. The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Molecular Biology, 67, 183–195.

Shao G N, Lu Z F, Xiong J S, Wang B, Jing Y H, Meng X B, Liu G F, Ma H Y, Liang Y, Chen F, Wang Y H, Li J Y, Yu H. 2019. Tiller bud formation regulators MOC1 and MOC3 cooperatively promote tiller bud outgrowth by activating FON1 expression in rice. Molecular Plant, 12, 1090–1102.

Shikata M, Koyama T, Mitsuda N, Ohme-Takagi M. 2009. Arabidopsis SBP-box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase. Plant & Cell Physiology, 50, 2133–2145.

Sun F L, Zhang W P, Xiong G S, Yan M X, Qian Q, Li J Y, Wang Y H. 2010. Identification and functional analysis of the MOC1 interacting protein 1. Journal of Genetics and Genomics, 37, 69–77.

Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, Ueguchi C. 2003. The OsTB1 gene negatively regulates lateral branching in rice. The Plant Journal33, 513–520. 

Tanaka W, Ohmori Y, Ushijima T, Matsusaka H, Matsushita T, Kumamaru T, Kawano S, Hirano H Y. 2015. Axillary meristem formation in rice requires the WUSCHEL ortholog TILLERS ABSENT1. The Plant Cell, 27, 1173–1184.

Wang B, Smith S M, Li J Y. 2018. Genetic regulation of shoot architecture. Annual Review of Plant Biology, 69, 437–468.

Wang D K, Pei K M, Fu Y P, Sun Z X, Li S J, Liu H Q, Tang K, Han B, Tao Y Z. 2007. Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene, 394, 13–24.

Wang J R, Hu H, Wang G H, Li J, Chen J Y, Wu P. 2009. Expression of PIN genes in rice (Oryza sativa L.): Tissue specificity and regulation by hormones. Molecular Plant, 2, 823–831.

Wang J W, Schwab R, Czech B, Mica E, Weigel D. 2008. Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. The Plant Cell, 20, 1231–1243.

Wang M, Qiao J Y, Yu C L, Chen H, Sun C D, Huang L Z, Li C Y, Geisler M, Qian Q, Jiang A D, Qi Y H. 2019. The auxin influx carrier, OsAUX3, regulates rice root development and responses to aluminium stress. Plant, Cell & Environment, 42, 1125–1138.

Wang Q, Kohlen W, Rossmann S, Vernoux T, Theres K. 2014. Auxin depletion from the leaf axil conditions competence for axillary meristem formation in Arabidopsis and tomato. The Plant Cell, 26, 2068–2079.

Xu M, Zhu L, Shou H X, Wu P. 2005. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant & Cell Physiology, 46, 1674–1681.

Xu X Y, E Z G, Zhang D Q, Yun Q B, Zhou Y, Niu B X, Chen C. 2021. OsYUC11-mediated auxin biosynthesis is essential for endosperm development of rice. Plant Physiology, 185, 934–950.

Yamamoto Y, Kamiya N, Morinaka Y, Matsuoka M, Sazuka T. 2007. Auxin biosynthesis by the YUCCA genes in rice. Plant Physiology, 143, 1362–1371.

Yu C L, Sun C D, Shen C J, Wang S K, Liu F, Liu Y, Chen Y L, Li C Y, Qian Q, Aryal B, Geisler M, Jiang D A, Qi Y H. 2015. The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryza sativa L.). The Plant Journal, 83, 818–830.

Yuan H, Qin P, Hu L, Zhan S, Wang S, Gao P, Li J, Jin M, Xu Z, Gao Q, Du A, Tu B, Chen W, Ma B, Wang Y, Li S. 2019. OsSPL18 controls grain weight and grain number in rice. Journal of Genetics and Genomics, 46, 41–51.

Zhang Y, Schwarz S, Saedler H, Huijser P. 2007. SPL8, a local regulator in a subset of gibberellin-mediated developmental processes in Arabidopsis. Plant Molecular Biology, 63, 429–439.

Zhao H, Ma T, Wang X, Deng Y, Ma H, Zhang R, Zhao J. 2015. OsAUX1 controls lateral root initiation in rice (Oryza sativa L.). Plant, Cell & Environment, 38, 2208–2222.

Zhao J F, Wang T, Wang M X, Liu Y Y, Yuan S J, Gao Y N, Yin L, Sun W, Peng L X, Zhang W H, Wan J M, Li X Y. 2014. DWARF3 participates in an SCF complex and associates with DWARF14 to suppress rice shoot branching. Plant & Cell Physiology, 55, 1096–1109.

[1] Hanzhu Gu, Xian Wang, Minhao Zhang, Wenjiang Jing, Hao Wu, Zhilin Xiao, Weiyang Zhang, Junfei Gu, Lijun Liu, Zhiqin Wang, Jianhua Zhang, Jianchang Yang, Hao Zhang.

The response of roots and the rhizosphere environment to integrative cultivation practices in paddy rice [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1879-1896.

[2] Yuguang Zang, Gaozhao Wu, Qiangqiang Li, Yiwen Xu, Mingming Xue, Xingyu Chen, Haiyan Wei, Weiyang Zhang, Hao Zhang, Lijun Liu, Zhiqin Wang, Junfei Gu, Jianchang Yang.

Irrigation regimes modulate non-structural carbohydrate remobilization and improve grain filling in rice (Oryza sativa L.) by regulating starch metabolism [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1507-1522.

No Suggested Reading articles found!