Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (9): 2810-2823    DOI: 10.1016/j.jia.2022.12.012
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Immunogenetic basis of chicken’s heterophil to lymphocyte ratio revealed by genome-wide indel variants analysis

ZHANG Jin1*, WANG Jie2*, WANG Qiao1, CUI Huan-xian1, DING Ji-qiang1, WANG Zi-xuan1, Mamadou Thiam1, LI Qing-he1, ZHAO Gui-ping1#

1 Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China

2 Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250023, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  增强宿主免疫力是降低鸡发病率的有效途径。异嗜性粒细胞与淋巴细胞比率(H/L)与鸟类的抗病性有关。具有不同H/L表型的鸡表现出抗病性的差异。然而,H/L作为免疫功能指标的有效性仍需进一步分析。本研究构建了H/L定向选育系(京星黄鸡),该品系已培育了12个世代。我们比较了异嗜性粒细胞的功能,并结合统计学分析方法来探索与H/L相关的候选基因和调控途径。与非选择系(NS)相比,从H/L选择系(G12)分离的异嗜性粒细胞的氧化爆发功能较强(P=0.044)。基于全基因组选择性清除分析,选择系第九世代(G9,n=92)相比于非选择系(NS,n=92),有22.44 Mb基因组区域受到选择,注释300个蛋白编码基因。其中包含与细胞内受体信号通路相关的解旋酶C结构域1IFIH1)和moesinMSN)诱导的干扰素,与白细胞趋化性负调节相关的C-C基序趋化因子受体6CCR6),二肽基肽酶4DPP4)和溶血补体(HC)以及与肌动蛋白细胞骨架组织相关的紧密连接蛋白1TJP1等基因。此外,基于全基因组关联分析GWAS),还鉴定出了45indelsH/L相关,共注释到29个蛋白编码基因。北京油鸡肝脏转录组验证发现,蛋白酪氨酸磷酸酶非受体5型(PTPN5)(r=0.75P=0.033)和氧甾醇结合蛋白5OSBPL5)(r=0.89P=0.0027)基因的表达量与H/L呈正相关。与高H/L组相比,北京油鸡低H/LPTPN5OSBPL5的表达量低(P<0.05)。OSBPL5基因上indel位点 5_13108985P=3.85E-06)的A/A等位基因频率从NSG5G9逐渐增加,且A/A个体的H/L低于杂合子A/ATCTP=4.28E-04)和纯合ATCT/ATCT个体(P=3.40E-05)。以上结果表明,H/L经过定向选育,异嗜性粒细胞的氧化爆发功能增强,基因组22.44 Mb区域受到定向选择。另外PTPN5OSBPL5基因被鉴定为H/L相关候选基因。这些发现揭示了H/L与免疫相关的复杂遗传机制,基于H/L进行遗传选育有助于提高鸡的免疫力。




Abstract  

Enhancing host immunity is an effective way to reduce morbidity in chickens.  Heterophil to lymphocyte ratio (H/L) is associated with host disease resistance in birds.  Chickens with different H/L levels show different disease resistances.  However, the utility of the H/L as an indicator of immune function needs to be further analyzed.  In this study, a H/L directional breeding chicken line (Jingxing yellow chicken) was constructed, which has been bred for 12 generations.  We compared the function of heterophils, and combined statistical analysis to explore the candidate genes and pathways related to H/L.  The oxidative burst function of the heterophils isolated from the H/L selection line (G12) was increased (P=0.044) compared to the non-selection line (NS).  The 22.44 Mb genomic regions which annotated 300 protein-coding genes were selected in the genome of G9 (n=92) compared to NS (n=92) based on a genome-wide selective sweep.  Several selective regions were identified containing genes like interferon induced with helicase C domain 1 (IFIH1) and moesin (MSN) associated with the intracellular receptor signaling pathway, C–C motif chemokine receptor 6 (CCR6), dipeptidyl peptidase 4 (DPP4) and hemolytic complement (HC) associated with the negative regulation of leukocyte chemotaxis and tight junction protein 1 (TJP1) associated with actin cytoskeleton organization.  In addition, 45 genome-wide significant indels containing 29 protein-coding genes were also identified as associated with the H/L based on genome-wide association study (GWAS).  The expression of protein tyrosine phosphatase non-receptor type 5 (PTPN5) (r=0.75, P=0.033) and oxysterol binding protein like 5 (OSBPL5) (r=0.89, P=0.0027) were positively correlated with H/L.  Compared to the high H/L group, the expressions of PTPN5 and OSBPL5 were decreased (P<0.05) in the low H/L group of Beijing you chicken.  The A/A allelic frequency of indel 5_13108985 (P=3.85E–06) within OSBPL5 gradually increased from the NS to G5 and G9, and the individuals with A/A exhibited lower H/L than individuals with heterozygote A/ATCT (P=4.28E–04) and homozygous ATCT/ATCT (P=3.40E–05).  Above results indicated oxidative burst function of heterophils were enhanced, and 22.44 Mb genomic regions were selected with the directional selection of H/L.  In addition, PTPN5 and OSBPL5 genes were identified as H/L-related candidate genes.  These findings revealed the complex genetic mechanism of H/L related to immunity and will allow selection for improving chicken immunity based on the H/L

Keywords:  H/L ratio       heterophil        indel        selective sweep        GWAS  
Received: 26 May 2022   Accepted: 02 November 2022
Fund: 

This research was supported by the grants from the National Natural Science Foundation of China (32072708), the National Key R&D Program of China (2018YFE0128000) and the Major Scientific Research Projects of Chinese Academy of Agricultural Sciences (CAAS-ZDRW202005).

About author:  ZHANG Jin, E-mail: zhangjin0913@126.com; WANG Jie, E-mail: wangjie4007@126.com; #Correspondence ZHAO Gui-ping, E-mail: zhaoguiping@caas.cn * These authors contributed equally to this study.

Cite this article: 

ZHANG Jin, WANG Jie, WANG Qiao, CUI Huan-xian, DING Ji-qiang, WANG Zi-xuan, Mamadou Thiam, LI Qing-he, ZHAO Gui-ping. 2023. Immunogenetic basis of chicken’s heterophil to lymphocyte ratio revealed by genome-wide indel variants analysis. Journal of Integrative Agriculture, 22(9): 2810-2823.

Abdala-Valencia H, Kountz T S, Marchese M E, Cook-Mills J M. 2018. VCAM-1 induces signals that stimulate ZO-1 serine phosphorylation and reduces ZO-1 localization at lung endothelial cell junctions. Journal of Leukocyte Biology104, 215–228.

Al-Murrani W K, Al-Rawi I K, Raof N M. 2002. Genetic resistance to Salmonella typhimurium in two lines of chickens selected as resistant and sensitive on the basis of heterophil/lymphocyte ratio. British Poultry Science43, 501–508.

Al-Murrani W K, Kassab A, Al-Sam H Z, Al-Athari A M. 1997. Heterophil/lymphocyte ratio as a selection criterion for heat resistance in domestic fowls. British Poultry Science38, 159–163.

Avendaño A, Sales-Pardo I, Marin L, Marin P, Petriz J. 2008. Oxidative burst assessment and neutrophil-platelet complexes in unlysed whole blood. Journal of Immunological Methods339, 124–131.

Barreto Sánchez A L, Wang Q, Thiam M, Wang Z, Zhang J, Zhang Q, Zhang N, Li Q, Wen J, Zhao G. 2022. Liver transcriptome response to heat stress in Beijing you chickens and guang ming broilers. Genes13, 416.

Booth D M, Várnai P, Joseph S K, Hajnóczky G. 2021. Oxidative bursts of single mitochondria mediate retrograde signaling toward the ER. Molecular Cell81, 3866–3876.

Campbell T W. 2015. Evaluation of the blood film. Clinics in Laboratory Medicine35, 703–721.

Campo J L, Davila S G. 2002. Estimation of heritability for heterophil:lymphocyte ratio in chickens by restricted maximum likelihood: Effects of age, sex, and crossing. Poultry Science81, 1448–1453.

Davis A K, Maney D L, Maerz J C. 2008. The use of leukocyte profiles to measure stress in vertebrates: A review for ecologists. Functional Ecology22, 760–772.

Deb I, Manhas N, Poddar R, Rajagopal S, Allan A M, Lombroso P J, Rosenberg G A, Candelario-Jalil E, Paul S. 2013. Neuroprotective role of a brain-enriched tyrosine phosphatase, STEP, in focal cerebral ischemia. The Journal of Neuroscience (The Official Journal of the Society for Neuroscience), 33, 17814–17826.

Dhabhar F S, McEwen B S. 1997. Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: A potential role for leukocyte trafficking. Brain, Behavior, and Immunity11, 286–306.

Dhabhar F S, Miller A H, McEwen B S, Spencer R L. 1996. Stress-induced changes in blood leukocyte distribution. Role of adrenal steroid hormones. Journal of Immunology157, 1638–1644.

Fulton J E. 2004. Selection for avian immune response: A commercial breeding company challenge. Poultry Science83, 658–661.

Gao Y, Sun Y, Ercan-Sencicek A G, King J S, Akerberg B N, Ma Q, Kontaridis M I, Pu W T, Lin Z. 2021. YAP/TEAD1 complex is a default repressor of cardiac toll-like receptor genes. International Journal of Molecular sciences22, 6649.

García-Ortiz A, Serrador J M. 2020. ERM proteins at the crossroad of leukocyte polarization, migration and intercellular adhesion. International Journal of Molecular Sciences21, 1502.

GB/T 7714–2015. 2004. Feeding standard of chicken. National Standard of the People’s Republic of China. (in Chinese)

Genovese K J, He H, Swaggerty C L, Kogut M H. 2013. The avian heterophil. Developmental and Comparative Immunology41, 334–340.

Han Z, Zhang Y, Wang C, Liu X, Jiang A, Liu Z, Wang J, Yang Z, Wei Z. 2019. Ochratoxin A-triggered chicken heterophil extracellular traps release through reactive oxygen species production dependent on activation of NADPH oxidase, ERK, and p38 MAPK signaling pathways. Journal of Agricultural and Food Chemistry67, 11230–11235.

Harmon B G. 1998. Avian heterophils in inflammation and disease resistance. Poultry Science77, 972–977.

Herlihy S E, Pilling D, Maharjan A S, Gomer R H. 2013. Dipeptidyl peptidase IV is a human and murine neutrophil chemorepellent. Journal of Immunology190, 6468–6477.

Hõrak P, Saks L, Ots I, Kollist H. 2002. Repeatability of condition indices in captive greenfinches (Carduelis chloris). Canadian Journal of Zoology80, 636–643.

Ken N, Evans M R. 2000. Ecological immunology: Life history trade-offs and immune defense in birds. Behavioral Ecology8, 19–26.

Kogut M, Lowry V K, Farnell M. 2002. Selective pharmacological inhibitors reveal the role of Syk tyrosine kinase, phospholipase C, phosphatidylinositol-3´-kinase, and p38 mitogen-activated protein kinase in Fc receptor-mediated signaling of chicken heterophil degranulation. International Immunopharmacology2, 963–973.

Kogut M H, Iqbal M, He H, Philbin V, Kaiser P, Smith A. 2005. Expression and function of Toll-like receptors in chicken heterophils. Developmental and Comparative Immunology29, 791–807.

Krams I, Vrublevska J, Cirule D, Kivleniece I, Krama T, Rantala M J, Sild E, Hõrak P. 2012. Heterophil/lymphocyte ratios predict the magnitude of humoral immune response to a novel antigen in great tits (Parus major). Comparative Biochemistry and Physiology (Part A: Molecular & Integrative Physiolog), 161, 422–428.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution33, 1870–1874.

Lee C C, Wu C C, Lin T L. 2014. Chicken melanoma differentiation-associated gene 5 (MDA5) recognizes infectious bursal disease virus infection and triggers MDA5-related innate immunity. Archives of Virology159, 1671–1686.

Lee K A. 2006. Linking immune defenses and life history at the levels of the individual and the species. Integrative and Comparative Biology46, 1000–1015.

Letunic I, Bork P. 2021. Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research49, W293–W296.

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics25, 1754–1760.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The sequence alignment/Map format and SAMtools. Bioinformatics25, 2078–2079.

MacColl E, Vanesky K, Buck J A, Dudek B M, Eagles-Smith C A, Heath J A, Herring G, Vennum C, Downs C J. 2017. Correlates of immune defenses in golden eagle nestlings. Journal of Experimental Zoology (Part A: Ecological and Integrative Physiology), 327, 243–253.

Maxwell M H, Robertson G W. 1998. The avian heterophil leucocyte: A review. World’s Poultry Science Journal54, 155–178.

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. 2010. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research20, 1297–1303.

Palacios M G, Cunnick J E, Vleck D, Vleck C M. 2009. Ontogeny of innate and adaptive immune defense components in free-living tree swallows, Tachycineta bicolor. Developmental and Comparative Immunology33, 456–463.

Pickering M C, Warren J, Rose K L, Carlucci F, Wang Y, Walport M J, Cook H T, Botto M. 2006. Prevention of C5 activation ameliorates spontaneous and experimental glomerulonephritis in factor H-deficient mice. Proceedings of the National Academy of Sciences of the United States of America103, 9649–9654.

Poddar R, Deb I, Mukherjee S, Paul S. 2010. NR2B-NMDA receptor mediated modulation of the tyrosine phosphatase STEP regulates glutamate induced neuronal cell death. Journal of Neurochemistry115, 1350–1362.

Price A L, Patterson N J, Plenge R M, Weinblatt M E, Shadick N A, Reich D. 2006. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics38, 904–909.

Pulli I, Lassila T, Pan G, Yan D, Olkkonen V M, Törnquist K. 2018. Oxysterol-binding protein related-proteins (ORPs) 5 and 8 regulate calcium signaling at specific cell compartments. Cell Calcium72, 62–69.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M A, Bender D, Maller J, Sklar P, de Bakker P I, Daly M J, Sham P C. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics81, 559–575.

Redmond S B, Chuammitri P, Andreasen C B, Palić D, Lamont S J. 2011. Genetic control of chicken heterophil function in advanced intercross lines: Associations with novel and with known Salmonella resistance loci and a likely mechanism for cell death in extracellular trap production. Immunogenetics63, 449–458.

Rodgers L S, Beam M T, Anderson J M, Fanning A S. 2013. Epithelial barrier assembly requires coordinated activity of multiple domains of the tight junction protein ZO-1. Journal of Cell Science126, 1565–1575.

Röhrl J, Yang D, Oppenheim J J, Hehlgans T. 2010. Specific binding and chemotactic activity of mBD4 and its functional orthologue hBD2 to CCR6-expressing cells. The Journal of Biological Chemistry285, 7028–7034.

Swaggerty C L, He H, Genovese K J, Kaiser P, Pevzner I Y, Kogut M H. 2006. The feathering gene is linked to degranulation and oxidative burst not cytokine/chemokine mRNA expression levels or Salmonella enteritidis organ invasion in broilers. Avian Pathology35, 465–470.

Swaggerty C L, Kogut M H, Ferro P J, Rothwell L, Pevzner I Y, Kaiser P. 2004. Differential cytokine mRNA expression in heterophils isolated from Salmonella-resistant and -susceptible chickens. Immunology113, 139–148.

Swaggerty C L, Pevzner I Y, Ferro P J, Crippen T L, Kogut M H. 2003a. Association between in vitro heterophil function and the feathering gene in commercial broiler chickens. Avian Pathology32, 483–488.

Swaggerty C L, Pevzner I Y, Lowry V K, Farnell M B, Kogut M H. 2003b. Functional comparison of heterophils isolated from commercial broiler chickens. Avian Pathology32, 95–102.

Thiam M, Barreto Sánchez A L, Zhang J, Zheng M, Wen J, Zhao G, Wang Q. 2021. Association of heterophil/lymphocyte ratio with intestinal barrier function and immune response to Salmonella enteritidis infection in chicken. Animals (Basel), 11, 3498.

Wang K, Li M, Hakonarson H. 2010. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research38, e164.

Winterbourn C C, Kettle A J. 2013. Redox reactions and microbial killing in the neutrophil phagosome. Antioxid Redox Signal18, 642–660.

Xie L, Xie Z, Wang S, Huang J, Deng X, Xie Z, Luo S, Zeng T, Zhang Y, Zhang M. 2019. Altered gene expression profiles of the MDA5 signaling pathway in peripheral blood lymphocytes of chickens infected with avian reovirus. Archives of Virology164, 2451–2458.

Yi X, Zeng C, Liu H, Chen X, Zhang P, Yun B S, Jin G, Zhou A. 2013. Lack of RNase L attenuates macrophage functions. PLoS ONE8, e81269.

Zhao B, Ye X, Yu J, Li L, Li W, Li S, Yu J, Lin J D, Wang C Y, Chinnaiyan A M, Lai Z C, Guan K L. 2008. TEAD mediates YAP-dependent gene induction and growth control. Genes & Development22, 1962–1971.

Zhou X, Stephens M. 2012. Genome-wide efficient mixed-model analysis for association studies. Nature Genetics44, 821–824.

Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi A H, Tanaseichuk O, Benner C, Chanda S K. 2019. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nature Communications10, 1523.

Zhu B, Li Q, Liu R, Zheng M, Wen J, Zhao G. 2019. Genome-wide association study of H/L traits in chicken. Animals9, 260.

No related articles found!
No Suggested Reading articles found!