Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (3): 710-724    DOI: 10.1016/S2095-3119(20)63590-0
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Tissue distribution and changes in dopamine during development and stress responses in Malus germplasm
ZHANG Zhi-jun1, ZHANG Jing1, TANG Zhong-wen1, WANG Yan-peng1, GAO Teng-teng1, LIU Xiao-min1, MA Feng-wang1, LI Chao1
State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

多巴胺是一种儿茶酚胺和一种抗氧化剂,在应对逆境时起作用,它与植物激素相互作用以介导植物发育。目前,关于苹果中多巴胺功能的研究较少。本研究开发了一种用于分析苹果种质中的多巴胺测定方法,以阐明多巴胺在苹果树的组织分布、发育变化、昼夜变化和逆境响应。首先,对所提出的方法进行了验证,定量的线性范围在0.1-20 ng mL-1范围内稳定,仪器、日间精密度和样品重复性相对标准偏差分别为1.024%、5.607%和7.237%,加标回收率大于100%,表明该方法的可行性及其适用于快速分析苹果属种质中的多巴胺。接下来,测量了322个苹果组织中的多巴胺含量。结果表明,苹果的多巴胺水平较低,叶片中多巴胺的平均含量高于果皮和果肉。多巴胺在栽培品种和野生种质中向右偏。最后,分析了组织特异性、发育变化、昼夜变化和对逆境的响应。在栽培品种‘皮诺娃’(Malus domestica)中,多巴胺含量在叶芽中最高,在果肉中最低。叶片和果肉中多巴胺含量随着栽培品种‘凉香’(Malus domestica)的生长发育而降低。与对照相比,干旱或盐胁迫后苹果叶片的多巴胺含量更高。在本研究中,建立了一种基于HPLC-MS的苹果多巴胺检测方法,并证明是一种稳健的方法。本研究为未来阐明苹果树中多巴胺的组织分布、发育变化、昼夜变化和逆境响应提供了一个框架。




Abstract  Dopamine is a catecholamine and an anti-oxidant which functions in responses to stress and it interacts with plant hormones to mediate plant development.  At present, there are few studies on the functions of dopamine in apple.  This study developed a method for dopamine determination which was used to analyze dopamine in Malus germplasm, in order to clarify the tissue distribution, developmental changes, diurnal variations, and stress responses in apple trees.  First, the proposed method was verified.  The linear range of quantification was robust from 0.1 to 20 ng mL–1.  The instrumental, inter-day precision, and sample repeatability relative standard deviations were 1.024, 5.607, and 7.237%, respectively.  The spiked recovery was greater than 100%, indicating the feasibility of the method and its suitability for the rapid analysis of dopamine in Malus.  Next, the dopamine content was measured in 322 Malus tissues.  The results showed that the dopamine level in Malus was low and the average dopamine content in leaf was higher than in peel and flesh.  The dopamine had a skewed distribution that deviated to the right in cultivars and wild accessions.  Finally, the tissue specificity, developmental changes, diurnal changes, and responses to stress were analyzed.  In cultivar ‘Pinova’ (Malus domestica), the dopamine concentration was the highest in leaf buds and lowest in flesh.  The dopamine contents in leaf and flesh decreased with the growth and development of cultivar ‘Liangxiang’ (Malus domestica).  The dopamine content of apple leaves was higher after either drought or salinity stress as compared to the control.  In this study, a dopamine detection method for apple was established based on HPLC-MS and shown to be a robust approach.  This study provides a framework for future research on elucidating the tissue distribution, developmental changes, diurnal variation, and stress responses of dopamine in apple trees.
Keywords:  dopamine        Malus        HPLC-MS        cultivar        wild accession  
Received: 08 October 2020   Accepted: 01 December 2020
Fund: This work was supported by the National Key Research and Development Program of China (2019YFD1001403–2B), the China Agriculture Research System of MOF and MARA (CARS-27), and the National Natural Science Foundation of China (31972389).
About author:  ZHANG Zhi-jun, E-mail: 1459030014@qq.com; Correspondence LI Chao, Tel/Fax: +86-29-87082648, E-mail: cl8609@nwafu.edu.cn

Cite this article: 

ZHANG Zhi-jun, ZHANG Jing, TANG Zhong-wen, WANG Yan-peng, GAO Teng-teng, LIU Xiao-min, MA Feng-wang, LI Chao. 2022. Tissue distribution and changes in dopamine during development and stress responses in Malus germplasm. Journal of Integrative Agriculture, 21(3): 710-724.

Allen J F. 2003. Superoxide as an obligatory, catalytic intermediate in photosynthetic reduction of oxygen by adrenaline and dopamine. Antioxidants and Redox Signaling, 5, 7-14.

Alstyne K L V, Anderson K J, Winans A K, Gifford S A. 2011. Dopamine release by the green alga Ulvaria obscura after simulated immersion by incoming tides. Marine Biology, 159, 2087-2094.

Alstyne K L V, Harvey E L, Cataldo M. 2014. Effects of dopamine, a compound released by the green-tide macroalga Ulvaria obscura (Chlorophyta), on marine algae and invertebrate larvae and juveniles. Phycologia, 53, 195-202.

Allwood J W, Goodacre R. 2010. An introduction to liquid chromatography-mass spectrometry instrumentation applied in plant metabolomic analyses. Phytochemical Analysis, 21, 33-47.

Araji S, Grammer T A, Gertzen R, Anderson S D. 2014. Novel roles for the polyphenol oxidase enzyme in secondary metabolism and the regulation of cell death in walnut. Plant Physiology, 164, 1191-1203.

Bertoldi M. 2014. Mammalian dopa decarboxylase: Structure, catalytic activity and inhibition. Archives of Biochemistry and Biophysics, 546, 1-7.  

Bonnet C B, Hubert O, Mbeguie D M A, Pallet D, Hiol A, Reynes M, Poucheret P. 2013. Effect of physiological harvest stages on the composition of bioactive compounds in Cavendish bananas. Journal of Zhejiang University Science (B), 14, 270-278.

Borges C V, Filiol Belin M A, Amorim E P, Minatel I O, Monteiro G C, Gomez H A G, Monar G R S, Lima G P P. 2019. Bioactive amines changes during the ripening and thermal processes of bananas and plantains. Food Chemistry, 298, 125020.

Carrera V, Sabater E, Vilanova E A, Sogorb M. 2007. A simple and rapid HPLC–MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: Application to the secretion of bovine chromaffin cell cultures. Journal of Chromatography (B), 847, 88-94.

Chen J, Shi Y P, Liu J Y. 2003. Determination of noradrenaline and dopamine in Chinese herbal extracts from Portulaca oleracea L. by high-performance liquid chromatography. Journal of Chromatography (A), 1003, 127-132.

Eidhin D M N, Murphy E, O'Beirne D. 2006. Polyphenol oxidase from apple (Malus domestica Borkh. cv Bramley's Seedling): purification strategies and characterization. Journal of Food Science, 71, C51-C58.

Foll B L, Collo G, Rabiner E A, Boileau I. 2014. Dopamine D3 receptor ligands for drug addiction treatment: update on recent findings. Progress in Brain Research211, 255-275.

Gao T T, Zhang Z J, Liu X M, Wu Q,   Q, Liu Q W, van Nocker S, Ma F W, Li C. 2020. Physiological and transcriptome analyses of the effects of exogenous dopamine on drought tolerance in apple. Plant Physiology and Biochemistry, 148, 260-272.

Gao Y, Liu F Z, Wang K, Wang D J, Gong X, Liu L J, Richards C M, Henk A D, Volk G M. 2015. Genetic diversity of Malus cultivars and wild relatives in the Chinese National Repository of Apple Germplasm Resources. Tree Genetics and Genomes, 11, 106.

Gomes B R, Soares R D C S, Santos W D D, Marchiosi R, Soares A R, Filho O F. 2014. The effects of dopamine on antioxidant enzymes activities and reactive oxygen species levels in soybean roots. Plant Signaling and Behavior, 147, 2893-2901. 

Guidotti B B, Gomes B R, Soares R D C S, Soares A R, Filho O F. 2013. The effects of dopamine on root growth and enzyme activity in soybean seedlings. Plant Signaling and Behavior, 8, e25477.

György Z, Jaakola L, Neubauer P, Hohtola A. 2009. Isolation and genotype-dependent, organ-specific expression analysis of a Rhodiola rosea cDNA encoding tyrosine decarboxylase. Journal of Plant Physiology, 166, 1581-1586.

Hawkins K M, Smolke C D. 2008. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nature Chemical Biology4, 564-573.

Holland C K, Jez J M. 2018. Reaction mechanism of prephenate dehydrogenase from the alternate tyrosine biosynthesis pathway in plants. Chembiochem, 19, 11.

Jiao C J, Lan G P, Sun Y H, Wang G Q, Sun Y. 2020. Dopamine alleviates chilling stress in watermelon seedlings via modulation of proline content, antioxidant enzyme activity, and polyamine metabolism. Journal of Plant Growth Regulation, 40, 277-292.

Kambeitz J, Abi-Dargham A, Kapur S, Howes O D. 2014. Alterations in cortical and extrastriatal subcortical dopamine function in schizophrenia: Systematic review and meta-analysis of imaging studies. The BritishJournal of Psychiatry, 204, 420-429.

Kampatsikas I, Bijelic A, Pretzler M, Rompel A. 2017. Three recombinantly expressed apple tyrosinases suggest the amino acids responsible for mono-versus diphenolase activity in plant polyphenol oxidases. ScientificReports7, 1-13.

King R, Bonfiglio R, Metzler F F, Stein C M, Olah T. 2000. Mechanistic investigation of ionization suppression in electrospray ionization. Journal of the American Society for Mass Spectrometry11, 942-950.

Kong K H, Lee J L, Park H J, Cho S H. 1998. Purification and characterization of the tyrosinase isozymes of pine needles. IUBMB Life, 45, 717-724.

Kulma A, Szopa J. 2007. Catecholamines are active compounds in plants. Plant Science, 172, 433-440.

Kushnir M M, Urry F M, Frank E L, Roberts W L, Shushan B. 2002. Analysis of catecholamines in urine by positive-ion electrospray tandem mass spectrometry. Clinical Chemistry, 48, 323-331.

Lan G P, Jiao C J, Wang G Q, Sun Y H, Sun Y. 2020. Effects of dopamine on growth, carbon metabolism, and nitrogen metabolism in cucumber under nitrate stress. Scientia Horticulturae, 260, 108790.

Lehmann T, Pollmann S. 2009. Gene expression and characterization of a stress-induced tyrosine decarboxylase from Arabidopsis thaliana. FEBS Letters, 583, 1895-1900.

Liang B W, Gao T T, Zhao Q, Ma C Q, Wei Z W, Li C Y, Li C, Ma F W. 2018. Effects of exogenous dopamine on the uptake, transport, and resorption of apple ionome under moderate drought. Frontiers in Plant Science, 9, 755.

Liang B W, Li C, Ma C Q, Wang Q, Huang D, Chen Q, Li C Y, Ma F W. 2017. Dopamine alleviates nutrient deficiency-induced stress in Malus hupehensis. Plant Physiology and Biochemistry, 119, 346-359.

Li C, Sun X K, Chang C, Jia D F, Wei Z W, Li C Y, Ma F W. 2015. Dopamine alleviates salt-induced stress in Malus hupehensis. Physiologia Plantarum, 153, 584-602.

Liu X M, Gao T T, Zhang Z J, Tan K X, Jin Y B, Zhao Y J, Ma F W, Li C. 2020. The mitigation effects of exogenous dopamine on low nitrogen stress in Malus hupehensis. Journal of Integrative Agriculture, 19, 2709-2724.

Lotharius J, Brundin P. 2003. Pathogenesis of parkinson’s disease: Dopamine, vesicles and α-synuclein. Nature Reviews Neuroscience, 3, 932-942.

Luca F V D. 1995. Phloem-specific expression of tyrosine/dopa decarboxylase genes and the biosynthesis of isoquinoline alkaloids in Opium Poppy. The Plant Cell, 7, 1811-1821.

Luca G V D. 2005. Wound-inducible biosynthesis of phytoalexin hydroxycinnamic acid amides of tyramine in tryptophan and tyrosine decarboxylase transgenic tobacco lines. Plant Physiology, 137, 692-699.

Ludovici M. 2017. Liquid Chromatography || Principles, current applications, and future perspectives of liquid chromatography-mass spectrometry in clinical chemistry. Liquid chromatography, 22, 727-751.

Maeda H, Yoo H, Dudareva N. 2010. Prephenate aminotransferase directs plant phenylalanine biosynthesis via arogenate. Nature Chemical Biology, 7, 19-21.

Manini P, Andreoli R, Cavazzini S, Bergamaschi E, Mutti A. 2000. Liquid chromatography-electrospray tandem mass spectrometry of acidic monoamine metabolites. Journal of Chromatography (B: Biomedical Sciences and Applications), 744, 423-431.

Marques E, Vasconcelos F, Rolo M R, Pereira F C. 2008. Influence of chronic exercise on the amphetamine-induced dopamine release and neurodegeneration in the striatum of the rat. Annals of the New York Academy of Sciences1139, 222-231.

Merbel N C V D, Hendriks G, Imbos R, Tuunainen J. 2011. Quantitative determination of free and total dopamine in human plasma by LC-MS/MS: the importance of sample preparation. Bioanalysis, 3, 1949-1961.

Moghadam Y A, Piri K, Bahramnejad B, Ghiasvand T. 2014. Dopamine production in pairy root cultures of Portulaca oleracea (Purslane) using Agrobacterium rhizogenes. Journal of Agricultural Science and Technology, 16, 409-420.

Nevado J J B, Gallego J M L, Laguna P B. 1995. Spectrophotometric determination of catecholamines with metaperiodate by flow-injection analysis. Analytica Chimica Acta, 300, 293-297.

Plonka J, Michalski A. 2017. The influence of processing technique on the catecholamine and indolamine contents of fruits. Journal of Food Composition and Analysis, 57, 102-108.

Polturak G, Breitel D, Grossman N, Sarrion-Perdigones A, Weithorn E, Pliner M, Orzaez D, Granell A, Rogachev I, Aharoni A. 2016. Elucidation of the first committed step in betalain biosynthesis enables the heterologous engineering of betalain pigments in plants. New Phytologist, 210, 269-283.

Puig M V, Rose J, Schmidt R, Freund N. 2014. Dopamine modulation of learning and memory in the prefrontal cortex: insights from studies in primates, rodents, and birds. Frontiers in Neural Circuits, 8, 1-15.

Randhir R, Shetty P, Shetty K. 2002. L-DOPA and total phenolic stimulation in dark germinated fava bean in response to peptide and phytochemical elicitors. Process Biochemistry, 37, 1247-1256.

Rosei M A, Blarzino C, Foppoli C, Mosca L, Coccia R. 1994. Lipoxygenase-catalyzed oxidation of catecholamines. Biochemical and Biophysical Research Communications, 200, 344-350.

Sanchez A, Toledo-Pinto E A, Menezes M L, Pereira O C M. 2004. A simple high-performance liquid chromatography assay for on-line determination of catecholamines in adrenal gland by direct injection on an ISRP column. Pharmacological Research, 50, 481-485.

Sato F. 2013. Improved production of plant isoquinoline alkaloids by metabolic engineering. Advances in Botanical Research, 68, 163-181.

Skirycz A, Widrych A, Szopa J. 2005. Expression of human dopamine receptor in potato (Solanum tuberosum) results in altered tuber carbon metabolism. BMC Plant Biology5, 1.

Steiner U, Schliemann W, Bohm H, Strack D. 1999. Tyrosinase involved in betalain biosynthesis of higher plants. Planta, 208, 114-124.

Su F L, Wang F, Zhu R H, Li H D. 2009. Determination of 5-hydroxytryptamine, norepinephrine, dopamine and their metabolites in rat brain tissue by LC–ESI–MS–MS. Chromatographia, 69, 207-213.

Suzuki M, Mizoguchi M, Yano F, Hara U, Yokoyama M, Watanabe N. 2003. Changes in catecholamine levels in short day-induced cotyledons of Pharbitis nil. Zeitschrift für Naturforschung C A Journal of Biosciences58, 220-224.

Swiedrych A, Stachowiak J, Szopa J. 2004. The catecholamine potentiates starch mobilization in transgenic potato tubers. Plant Physiology and Biochemistry, 42, 103-109.

Szopa J, Wilczynski G, Fiehn O, Wenczel A, Willmitzer L. 2001. Identification and quantification of catecholamines in potato plants (Solanum tuberosum) by GC–MS. Phytochemistry, 58, 315-320.

Taylor P J. 2005. Matrix effects: The achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry. Clinical Biochemistry, 38, 328-334.

Tsunoda M. 2006. Recent advances in methods for the analysis of catecholamines and their metabolites. Analytical and Bioanalytical Chemistry, 386, 506-514.

Voon V, Pessiglione M, Brezing C, Gallea C, Fernandez H H, Dolan R J, Hallett M. 2010. Mechanisms underlying dopamine-mediated reward bias in compulsive behaviors. National Institute of Health, 65, 135-142.

Wang Y P, Gao T T, Zhang Z J, Yuan X, Chen Q, Zheng J Z, Chen S Y, Ma F W, Li C. 2020. Overexpression of the tyrosine decarboxylase gene MdTyDC confers salt tolerance in apple. Environmental and Experimental Botany, 180, 104244.

Wang Y S, Fice D S, Yeung P K F. 1999. A simple high-performance liquid chromatography assay for simultaneous determination of plasma norepinephrine, epinephrine, dopamine and 3,4-dihydroxyphenyl acetic acid. Journal of Pharmaceutical and Biomedical Analysis21, 519-525.

Willesem M A, Verbeek M M, Kamsteeg E J, Aeby A, Blau N, Burlina A. 2010. Tyrosine hydroxylase deficiency: A treatable disorder of brain catecholamine biosynthesis. Brain, 133, 1810-1822.

Xu J J, Fang X, Li C Y, Yang L, Chen X Y. 2019. General and specialized tyrosine metabolism pathways in plants. aBIOTECH, 1, 97-105.


[1] ZOU Jie, HU Wei, LI Yu-xia, HE Jia-qi, ZHU Hong-hai, ZHOU Zhi-guo .
Screening of drought resistance indices and evaluation of drought resistance in cotton (Gossypium hirsutum L.)
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 495-508.
[2] CHENG Hang-yuan, WANG Xing, FENG Tian-yu, PENG Chuan-xi, WANG Wei, YANG Mu-yu, ZHOU Yu-yi. Giving maize an excited start – Effects of dopamine on maize germination[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2690-2698.
[3] LIU Xiao-min, GAO Teng-teng, ZHANG Zhi-jun, TAN ke-xin, JIN Yi-bo, ZHAO Yong-juan, MA Feng-wang, LI Chao. The mitigation effects of exogenous dopamine on low nitrogen stress in Malus hupehensis[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2709-2724.
[4] HUANG Cheng-dong, LIU Quan-qing, LI Xiao-lin, ZHANG Chao-chun. Effect of intercropping on maize grain yield and yield components[J]. >Journal of Integrative Agriculture, 2019, 18(8): 1690-1700.
[5] ZHOU Liang, MU Tai-hua, MA Meng-mei, ZHANG Ruo-fang, SUN Qing-hua, XU Yan-wen. Nutritional evaluation of different cultivars of potatoes (Solanum tuberosum L.) from China by grey relational analysis (GRA) and its application in potato steamed bread making[J]. >Journal of Integrative Agriculture, 2019, 18(1): 231-245.
[6] Seong-Woo Cho, Chon-Sik Kang, Taek-Gyu Kang, Kwang-Min Cho, Chul Soo Park. Influence of different nitrogen application on flour properties, gluten properties by HPLC and end-use quality of Korean wheat[J]. >Journal of Integrative Agriculture, 2018, 17(05): 982-993.
No Suggested Reading articles found!