Please wait a minute...
Journal of Integrative Agriculture  2020, Vol. 19 Issue (5): 1261-1273    DOI: 10.1016/S2095-3119(20)63171-9
Special Issue: 园艺-分子生物合辑Horticulture — Genetics · Breeding
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Genome-wide identification and expression analysis of asparagine synthetase family in apple
YUAN Xi-sen1*, YU Zi-peng1*, LIU Lin1, XU Yang2, ZHANG Lei1, HAN De-guo3, ZHANG Shi-zhong1 
1 State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, P.R.China
2 Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao 266100, P.R.China
3 College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
Asparagine is an efficient nitrogen transport and storage carrier.  Asparagine synthesis occurs by the amination of aspartate which is catalyzed by asparagine synthetase (ASN) in plants.  Complete genome-wide analysis and classifications of the ASN gene family have recently been reported in different plants.  However, systematic analysis and expression profiles of these genes have not been performed in apple (Malus domestica).  Here, a comprehensive bioinformatics approach was applied to identify MdASNs in apple.  Then, plant phylogenetic tree, chromosome location, conserved protein motif, gene structure, and expression pattern of MdASNs were analyzed.  Five members were identified and distributed on 4 chromosomes with conserved GATase-7 and ASN domains.  Expression analysis indicated that all MdASNs mRNA accumulated at the highest level in reproductive organs, namely flowers or fruits, which may be associated with the redistribution of free amino acids in plant metabolic organs and reservoirs.  Additionally, most of MdASNs were dramatically up-regulated under various nitrogen supplies, especially in the aboveground part.  Taken together, MdASNs may be assigned to be responsible for the nitrogen metabolism and asparagine synthesis in apple.
Keywords:  Malus domestica       bioinformatics        ASN family        asparagine synthetase        nitrogen metabolism  
Received: 17 May 2019   Accepted:
Fund: This study was financially supported by the National Natural Science Foundation of China (31901574 and 31570271).
Corresponding Authors:  Correspondence HAN De-guo, Tel/Fax: +86-451-55190243, E-mail: deguohan@neau.edu.cn; ZHANG Shi-zhong, Tel/Fax: +86-538-8241318, E-mail: shizhong@sdau.edu.cn    
About author:  YUAN Xi-sen, E-mail: xisenyuan@163.com; YU Zi-peng, E-mail: yzp52120090916@163.com; * These authors contributed equally to this study.

Cite this article: 

YUAN Xi-sen, YU Zi-peng, LIU Lin, XU Yang, ZHANG Lei, HAN De-guo, ZHANG Shi-zhong. 2020.

Genome-wide identification and expression analysis of asparagine synthetase family in apple
. Journal of Integrative Agriculture, 19(5): 1261-1273.

And B J M, Lea P J. 1977. Amino acid metabolism. Annual Review of Plant Physiology, 28, 299–329.
Cao H, Qi S, Sun M, Li Z, Yang Y, Crawford N M, Wang Y. 2017. Overexpression of the maize ZmNLP6 and ZmNLP8 can complement the Arabidopsis nitrate regulatory mutant nlp7 by restoring nitrate signaling and assimilation. Frontiers in Plant Science, 8, 1703.
Coruzzi G M. 2003. Primary N-assimilation into amino acids in Arabidopsis. The Arabidopsis Book, 2, e0010.
Dembinski E, Bany S. 1991. The amino acid pool of high and low protein rye inbred lines (Secale cereale L.). Journal of Plant Physiology, 138, 494–496.
Dembinski E, Bany S, Raczynska-Bojanowska K. 1995. Asparagine and glutamine in the leaves of high and low protein maize. Acta Physiologiae Plantarum, 17, 361–365.
Dimick P S, Hoskin J C. 1983. Review of apple flavor - state of the art. Critical Reviews in Food Science and Nutrition, 18, 387–409.
Distelfeld A, Pearce S P, Avni R, Scherer B, Uauy C, Piston F, Slade A, Zhao R, Dubcovsky J. 2012. Divergent functions of orthologous NAC transcription factors in wheat and rice. Plant Molecular Biology, 78, 515–524.
Edgar R C. 2004. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5, 113.
Fischer A M. 2012. The complex regulation of senescence. Critical Reviews in Plant Sciences, 31, 124–147.
Gao R, Curtis T Y, Powers S J, Xu H, Huang J, Halford N G. 2016. Food safety: Structure and expression of the asparagine synthetase gene family of wheat. Journal of Cereal Science, 68, 122–131.
Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel R D, Bairoch A. 2003. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research, 31, 3784–3788.
Gaufichon L, Marmagne A, Belcram K, Yoneyama T, Sakakibara Y, Hase T, Grandjean O, Clement G, Citerne S, Boutet-Mercey S, Masclaux-Daubresse C, Chardon F, Soulay F, Xu X, Trassaert M, Shakiebaei M, Najihi A, Suzuki A. 2017. ASN1-encoded asparagine synthetase in floral organs contributes to nitrogen filling in Arabidopsis seeds. The Plant Journal, 91, 371–393.
Gaufichon L, Masclaux-Daubresse C, Tcherkez G, Reisdorf-Cren M, Sakakibara Y, Hase T, Clément G, Avice J C, Grandjean O, Marmagne A. 2013. Arabidopsis thaliana ASN2 encoding asparagine synthetase is involved in the control of nitrogen assimilation and export during vegetative growth. Plant Cell & Environment, 36, 328–342.
Gaufichon L, Reisdorf-Cren M, Rothstein S J, Chardon F, Suzuki A. 2010. Biological functions of asparagine synthetase in plants. Plant Science, 179, 141–153.
Giorno F, Guerriero G, Baric S, Mariani C. 2012. Heat shock transcriptional factors in Malus domestica: Identification, classification and expression analysis. BMC Genomics, 13, 639.
Gregersen Per L, Culetic A, Boschian L, Krupinska K. 2013. Plant senescence and crop productivity. Plant Molecular Biology, 82, 603–622.
Hayashi H, Chino M. 1990. Chemical composition of phloem sap from the uppermost internode of the rice plant. Plant & Cell Physiology, 31, 247–251.
Herrera-Rodriguez M B, Maldonado J M, Perez-Vicente R. 2004. Light and metabolic regulation of HAS1, HAS1.1 and HAS2, three asparagine synthetase genes in Helianthus annuus. Plant Physiology and Biochemistry, 42, 511–518.
Herrera-Rodriguez M B, Maldonado J M, Perez-Vicente R. 2006. Role of asparagine and asparagine synthetase genes in sunflower (Helianthus annuus) germination and natural senescence. Journal of Plant Physiology, 163, 1061–1070.
Hon-Kit W, Hiu-Ki C, Coruzzi G M, Hon-Ming L. 2004. Correlation of ASN2 gene expression with ammonium metabolism in Arabidopsis. Plant Physiology, 134, 332–338.
Huang Y, Sun M M, Ye Q, Wu X Q, Wu W H, Chen Y F. 2017. Abscisic acid modulates seed germination via ABA INSENSITIVE5-mediated PHOSPHATE1. Plant Physiology, 175, 1661–1668.
Hui T, Jie F, Drijber R A, Gao Y. 2015. Expression patterns of five genes involved in nitrogen metabolism in two winter wheat (Triticum aestivum L.) genotypes with high and low nitrogen utilization efficiencies. Journal of Cereal Science, 61, 48–54.
Hwang I S, An S H, Hwang B K. 2011. Pepper asparagine synthetase 1 (CaAS1) is required for plant nitrogen assimilation and defense responses to microbial pathogens. The Plant Journal, 67, 749–762.
Jeanmougin F, Thompson J D, Gouy M, Higgins D G, Gibson T J. 1998. Multiple sequence alignment with Clustal X. Trends in Biochemical Sciences, 23, 403–405.
Jia H F, Chai Y M, Li C L, Lu D, Luo J J, Qin L, Shen Y Y. 2011. Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiology, 157, 188–199.
Kichey T, Hirel B, Heumez E, Dubois F, Gouis J L. 2007. In winter wheat (Triticum aestivum L.), post-anthesis nitrogen uptake and remobilisation to the grain correlates with agronomic traits and nitrogen physiological markers. Field Crops Research, 102, 22–32.
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones S J, Marra M A. 2009. Circos: An information aesthetic for comparative genomics. Genome Research, 19, 1639–1645.
Lam H M, Hsieh M H, Coruzzi G. 1998. Reciprocal regulation of distinct asparagine synthetase genes by light and metabolites in Arabidopsis thaliana. The Plant Journal, 16, 345–353.
Lam H M, Peng S S, Coruzzi G M. 1994. Metabolic regulation of the gene encoding glutamine-dependent asparagine synthetase in Arabidopsis thaliana. Plant Physiology, 106, 1347–1357.
Lam H M, Wong P, Chan H K, Yam K M, Chen L, Chow C M, Coruzzi G M. 2003. Overexpression of the ASN1 gene enhances nitrogen status in seeds of Arabidopsis. Plant Physioloy, 132, 926–935.
Lee S Y, Chang S S, Shin J H, Kang D H. 2007. Membrane filtration method for enumeration and isolation of Alicyclobacillus spp. from apple juice. Letters in Applied Microbiology, 45, 540–546.
Letunic I, Doerks T, Bork P. 2012. SMART 7: Recent updates to the protein domain annotation resource. Nucleic Acids Research, 40, D302–D305.
Li J, Hou H, Li X, Xiang J, Yin X, Gao H, Zheng Y, Bassett C L, Wang X. 2013. Genome-wide identification and analysis of the SBP-box family genes in apple (Malus×domestica Borkh.). Plant Physiology and Biochemistry, 70, 100–114.
Li Y, Wu B, Yu Y, Yang G, Wu C, Zheng C. 2011. Genome-wide analysis of the RING finger gene family in apple. Molecular Genetics and Genomics, 286, 81–94.
Lohaus G, Büker M, Hußmann M, Soave C, Heldt H W. 1998. Transport of amino acids with special emphasis on the synthesis and transport of asparagine in the Illinois Low Protein and Illinois High Protein strains of maize. Planta, 205, 181–188.
Lomelino C L, Andring J T, Mckenna R, Kilberg M S. 2017. Asparagine synthetase: Function, structure, and role in disease. Journal of Biological Chemistry, 292, 19952–19958.
Loureiro I, Faria J, Clayton C, Ribeiro S M, Roy N, Santarem N, Tavares J, Cordeiro-Da-Silva A. 2013. Knockdown of asparagine synthetase A renders Trypanosoma brucei auxotrophic to asparagine. PLoS Neglected Tropical Diseases, 7, e2578.
Luo L, Qin R, Liu T, Yu M, Yang T, Xu G. 2018. OsASN1 plays a critical role in asparagine-dependent rice development. International Journal of Molecular Sciences, 20, doi: 10.3390/ijms20010130
Maaroufi-Dguimi H, Debouba M, Gaufichon L, Clement G, Gouia H, Hajjaji A, Suzuki A. 2011. An Arabidopsis mutant disrupted in ASN2 encoding asparagine synthetase 2 exhibits low salt stress tolerance. Plant Physiology and Biochemistry, 49, 623–628.
Martinez-Andujar C, Ghanem M E, Albacete A, Perez-Alfocea F. 2013. Response to nitrate/ammonium nutrition of tomato (Solanum lycopersicum L.) plants overexpressing a prokaryotic NH4+-dependent asparagine synthetase. Journal of Plant Physiology, 170, 676–687.
De Michele R, Formentin E, Todesco M, Toppo S, Carimi F, Zottini M, Barizza E, Ferrarini A, Delledonne M, Fontana P, Lo Schiavo F. 2009. Transcriptome analysis of Medicago truncatula leaf senescence: Similarities and differences in metabolic and transcriptional regulations as compared with Arabidopsis, nodule senescence and nitric oxide signalling. New Phytologist, 181, 563–575.
Mistry J, Finn R. 2007. Pfam: A domain-centric method for analyzing proteins and proteomes. Methods in Molecular Biology, 396, 43–58.
Muttucumaru N, Keys A J, Parry M A, Powers S J, Halford N G. 2014. Photosynthetic assimilation of 14C into amino acids in potato (Solanum tuberosum) and asparagine in the tubers. Planta, 239, 161–170.
Ohashi M, Ishiyama K, Kojima S, Konishi N, Nakano K, Kanno K, Hayakawa T, Yamaya T. 2015. Asparagine synthetase1, but not asparagine synthetase2, is responsible for the biosynthesis of asparagine following the supply of ammonium to rice roots. Plant and Cell Physiology, 56, 769–778.
Olea F, Perez-Garcia A, Canton F R, Rivera M E, Canas R, Avila C, Cazorla F M, Canovas F M, De Vicente A. 2004. Up-regulation and localization of asparagine synthetase in tomato leaves infected by the bacterial pathogen Pseudomonas syringae. Plant and Cell Physiology, 45, 770–780.
Palmer L E, Rabinowicz P D, O’shaughnessy A L, Balija V S, Nascimento L U, Dike S, De La Bastide M, Martienssen R A, Mccombie W R. 2003. Maize genome sequencing by methylation filtration. Science, 302, 2115–2117.
Potel F, Valadier M H, Ferrario-Mery S, Grandjean O, Morin H, Gaufichon L, Boutet-Mercey S, Lothier J, Rothstein S J, Hirose N, Suzuki A. 2009. Assimilation of excess ammonium into amino acids and nitrogen translocation in Arabidopsis thaliana - roles of glutamate synthases and carbamoylphosphate synthetase in leaves. FEBS Journal, 276, 4061–4076.
Richards N G, Kilberg M S. 2006. Asparagine synthetase chemotherapy. Annual Review of Biochemistry, 75, 629–654.
Schultz J, Milpetz F, Bork P, Ponting C P. 1998. SMART, a simple modular architecture research tool: Identification of signaling domains. Proceedings of the National Academy of Sciences of the United States of America, 95, 5857–5864.
Shi L F, Twary S N, Yoshioka H, Gregerson R G, Miller S S, Samac D A, Gantt J S, Unkefer P J, Vance C P. 1997. Nitrogen assimilation in alfalfa: Isolation and characterization of an asparagine synthetase gene showing enhanced expression in root nodules and dark-adapted leaves. The Plant Cell, 9, 1339–1356.
Sun M, Xu Y, Huang J, Jiang Z, Shu H, Wang H, Zhang S. 2017. Global identification, classification, and expression analysis of MAPKKK genes: Functional characterization of MdRaf5 reveals evolution and drought-responsive profile in apple. Scientific Reports, 7, 13511.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.
Tsai F Y, Coruzzi G. 1991. Light represses transcription of asparagine synthetase genes in photosynthetic and nonphotosynthetic organs of plants. Molecular and Cellular Biology, 11, 4966–4972.
Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar S K, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V,
et al. 2010. The genome of the domesticated apple (Malus × domestica Borkh.). Nature Genetics, 42, 833–839.
Wan T F, Shao G H, Shan X C, Zeng N Y, Lam H M. 2006. Correlation between AS1 gene expression and seed protein contents in different soybean (Glycine max [L.] Merr.) cultivars. Plant Biology, 8, 271–276.
Wang H, Liu D, Sun J, Zhang A. 2005. Asparagine synthetase gene TaASN1 from wheat is up-regulated by salt stress, osmotic stress and ABA. Journal of Plant Physiology, 162, 81–89.
Whitelaw C A, Barbazuk W B, Pertea G, Chan A P, Cheung F, Lee Y, Zheng L, Van Heeringen S, Karamycheva S, Bennetzen J L, Sanmiguel P, Lakey N, Bedell J, Yuan Y, Budiman M A, Resnick A, Van Aken S, Utterback T, Riedmuller S, Williams M, et al. 2003. Enrichment of gene-coding sequences in maize by genome filtration. Science, 302, 2118–2120.
Wong H K, Chan H K, Coruzzi G M, Lam H M. 2004. Correlation of ASN2 gene expression with ammonium metabolism in Arabidopsis. Plant Physiology, 134, 332–338.
Wu X, Song C, Wang B, Cheng J. 2002. Hidden Markov model used in protein sequence analysis. Journal of Biomedical Engineering, 19, 455–458. (in Chinese)
Xu Q F, Cheng W S, Li S S, Li W, Zhang Z X, Xu Y P, Zhou X P, Cai X Z. 2012. Identification of genes required for Cf-dependent hypersensitive cell death by combined proteomic and RNA interfering analyses. Journal of Experimental Botany, 63, 2421–2435.
Xu R, Sun P, Jia F, Lu L, Li Y, Zhang S, Huang J. 2014. Genomewide analysis of TCP transcription factor gene family in Malus domestica. Journal of Genetics, 93, 733–746.
Xu Y, Yu Z, Zhang D, Huang J, Wu C, Yang G, Yan K, Zhang S, Zheng C. 2018. CYSTM, a novel non-secreted cysteine-rich peptide family, involved in environmental stresses in Arabidopsis thaliana. Plant and Cell Physiology, 59, 423–438.
Xu Y, Yu Z, Zhang S, Wu C, Yang G, Yan K, Zheng C, Huang J. 2019. CYSTM3 negatively regulates salt stress tolerance in Arabidopsis. Plant Molecular Biology, 99, 395–406.
Yao Y X, Dong Q L, You C X, Zhai H, Hao Y J. 2011. Expression analysis and functional characterization of apple MdVHP1 gene reveals its involvement in Na+, malate and soluble sugar accumulation. Plant Physioloy and Biochemistry, 49, 1201–1208
Yu Z, Xu Y, Liu L, Guo Y, Yuan X, Man X, Liu C, Yang G, Huang J, Yan K, Zheng C, Wu C, Zhang S. 2019a. The importance of conserved serine for C-terminally encoded peptides function exertion in apple. International Journal of Molecular Sciences, 20, 775.
Yu Z, Xu Y, Zhu L, Zhang L, Liu L, Zhang D, Li D, Wu C, Huang J, Yang G, Yan K, Zhang S, Zheng C. 2019b. The Brassicaceae-specific secreted peptides, STMPs, function in plant growth and pathogen defense. Journal of Integrative Plant Biology, doi: 10.1111/jipb.12817
Yu Z, Zhang D, Xu Y, Jin S, Zhang L, Zhang S, Yang G, Huang J, Yan K, Wu C, Zheng C. 2019c. CEPR2 phosphorylates and accelerates the degradation of PYR/PYLs in Arabidopsis. Journal of Experimental Botany, 70, 5457–5469.
Zhang S, Xu R, Gao Z, Chen C, Jiang Z, Shu H. 2014. A genome-wide analysis of the expansin genes in Malus × Domestica. Molecular Genetics & Genomics, 289, 225–236.
Zhao T, Liang D, Wang P, Liu J, Ma F. 2012. Genome-wide analysis and expression profiling of the DREB transcription factor gene family in Malus under abiotic stress. Molecular Genetics & Genomics, 287, 423–436.
[1] CHEN Yuan, LIU Zhen-yu, HENG Li, Leila I. M. TAMBEL, CHEN De-hua. High plant density increases seed Bt endotoxin content in Bt transgenic cotton[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1796-1806.
[2] BIAN Zhong-hua, LEI Bo, CHENG Rui-feng, WANG Yu, LI Tao, YANG Qi-chang. Selenium distribution and nitrate metabolism in hydroponic lettuce (Lactuca sativa L.): Effects of selenium forms and light spectra[J]. >Journal of Integrative Agriculture, 2020, 19(1): 133-144.
[3] ZHANG Xiang, RUI Qiu-zhi, LIANG Pan-pan, WEI Chen-hua, DENG Guo-qiang, CHEN Yuan, CHEN Yuan, DONG Zhao-di, CHEN De-hua. Dynamics of Bt cotton Cry1Ac protein content under an alternating high temperature regime and effects on nitrogen metabolism[J]. >Journal of Integrative Agriculture, 2018, 17(09): 1991-1998.
No Suggested Reading articles found!