Please wait a minute...
Journal of Integrative Agriculture  2019, Vol. 18 Issue (10): 2294-2301    DOI: 10.1016/S2095-3119(19)62572-4
Special Issue: 植物病毒合辑Plant Virus
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Sugarcane mosaic virus infection of model plants Brachypodium distachyon and Nicotiana benthamiana
XU Jing-sheng1, 2*, DENG Yu-qing1, 2*, CHENG Guang-yuan1, 2, ZHAI Yu-shan1, 2, PENG Lei1, 2, DONG Meng1, 2, XU Qian1, 2, YANG Yong-qing2, 3  
1 Key Laboratory of Sugarcane Biology and Genetic Breeding (Fujian) of Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R.China
2 Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R.China
3 Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
Sugarcane mosaic virus (SCMV; genus Potyvirus, family Potyviridae) is a causal pathogen of sugarcane mosaic disease, and it is widespread in regions where sugarcane (Saccharum spp. hybrids) is grown.  It is difficult to investigate the molecular mechanism of pathogen infection in sugarcane because of limited genomic information.  Here, we demonstrated that SCMV strain FZ1 can systemically infect Brachypodium distachyon inbred line Bd21 and Nicotiana benthamiana through inoculation, double antibody sandwich enzyme-linked immunosorbent, transmission electron microscopy, and reverse transcription PCR assays.  The leaves of Bd21 developed mosaic symptoms, while the leaves of N. benthamiana showed no obvious symptoms under the challenge of SCMV-FZ1.  We concluded that B. distachyon inbred line Bd21 is a promising experimental model plant compared with N. benthamiana for study on the infectivity of SCMV.  This is the first report on the SCMV infection of model plants B. distachyon inbred line Bd21 and N. benthamiana, which will shed light on the mechanism of SCMV infection of sugarcane and benefit sugarcane breeding against sugarcane mosaic disease.
Keywords:  SCMV       infection       sugarcane       Brachypodium distachyon       Nicotiana benthamiana  
Received: 25 September 2018   Accepted:
Fund: Financial support was provided by the National Natural Science Foundation of China (31371688).
Corresponding Authors:  Correspondence XU Jing-sheng, Tel/Fax: +86-591-83851472, E-mail: xujingsheng@126.com    
About author:  DENG Yu-qing, E-mail: dyqdyq999@163.com; * These authors contributed equally to this study.

Cite this article: 

XU Jing-sheng, DENG Yu-qing, CHENG Guang-yuan, ZHAI Yu-shan, PENG Lei, DONG Meng, XU Qian, YANG Yong-qing. 2019. Sugarcane mosaic virus infection of model plants Brachypodium distachyon and Nicotiana benthamiana. Journal of Integrative Agriculture, 18(10): 2294-2301.

Bennetzen J L, Ma J. 2003. The genetic colinearity of rice and other cereals on the basis of genomic sequence analysis. Currunt Opinion in Plant Biology, 6, 128–133.
Bennetzen J L, SanMiguel P, Chen M, Tikhonov A, Francki M, Avramova Z. 1998. Grass genomes. Proceedings of the National Academy of Sciences of the United States of America, 95, 1975–1978.
Bennetzen J L, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli A C, Estep M, Feng L, Vaughn J N, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Triplett J, Yang X, et al. 2012. Reference genome sequence of the model plant Setaria. Nature Biotechnology, 30, 555–561.
Brkljacic J, Grotewold E, Scholl R, Mockler T, Garvin D F, Vain P, Brutnell T, Sibout R, Bevan M, Budak H. 2011. Brachypodium as a model for the grasses: Today and the future. Plant Physiology, 157, 3–13.
Brutnell T P, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu X G, Kellogg E, Van Eck J. 2010. Setaria viridis: A model for C4 photosynthesis. The Plant Cell, 22, 2537–2544.
Cheng G Y, Dong M, Xu Q, Peng L, Yang Z T, Wei T Y, Xu J S. 2017. Dissecting the molecular mechanism of the subcellular localization and cell-to-cell movement of the Sugarcane mosaic virus P3N-PIPO. Scientific Reports, 7, 9868
Cui Y, Lee M Y, Huo N, Bragg J, Yan L, Yuan C, Li C, Holditch S J, Xie J, Luo M C, Li D, Yu J, Martin J, Schackwitz W, Gu Y Q, Vogel J P, Jackson A O, Liu Z, Garvin D F. 2012. Fine mapping of the Bsr1 Barley stripe mosaic virus resistance gene in the model grass Brachypodium distachyon. PLoS One, 7, e38333.
Devos K M, Beales J, Nagamura Y, Sasaki T. 1999. Arabidopsis-rice: will colinearity allow gene prediction across the eudicot-monocot divide? Genome Research, 9, 825–829.
D’Hont A, Ison D, Alix K, Roux C, Glaszmann J C. 1998. Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome, 41, 221–225.
Fitzgerald T L, Powell J J, Schneebeli K, Hsia M M, Gardiner D M, Bragg J N, Mcintyre C L, Manners J M, Ayliffe M, Watt M. 2015. Brachypodium as an emerging model for cereal-pathogen interactions. Annals of Botany, 115, 717–731.
Fukuzawa N, Itchoda N T, Goto K, Masuta C, Matsumura T. 2010. HC-Pro, a potyvirus RNA silencing suppressor, cancels cycling of Cucumber mosaic virus in Nicotiana benthamiana plants. Virus Genes, 40, 440–446.
Gallego F, Feuillet C, Messmer M, Penger A, Graner A, Yano M, Sasaki T, Keller B. 1998. Comparative mapping of the two wheat leaf rust resistance loci Lr1 and Lr10 in rice and barley. Genome, 41, 328–336.
Gao L, Zhai R, Zhong Y K, Karthikeyan A, Ren R, Zhang K, Li K, Zhi H J. 2015. Screening isolates of Soybean mosaic virus for infectivity in a model plant, Nicotiana benthamiana. Plant Disease, 99, 442–446.
Goodin M M, Zaitlin D, Naidu R A, Lommel S A. 2008. Nicotiana benthamiana: Its history and future as a model for plant-pathogen interactions. Molecular Plant-Microbe Interactions, 21, 1015.
Grivet L, D’Hont A, Roques D, Feldmann P, Lanaud C, Glaszmann J C. 1996. RFLP mapping in cultivated sugarcane (Saccharum spp.): Ggenome organization in a highly polyploid and aneuploid interspecific hybrid. Genetics, 142, 987–1000.
Grootboom A W, Mkhonza N L, Mbambo Z, O’Kennedy M M, da Silva L S, Taylor J, Taylor J R, Chikwamba R, Mehlo L. 2014. Co-suppression of synthesis of major α-kafirin sub-class together with γ-kafirin-1 and γ-kafirin-2 required for substantially improved protein digestibility in transgenic sorghum. Plant Cell Reports, 33, 521–537.
Guyot R, Keller B. 2004. Ancestral genome duplication in rice. Genome, 47, 610–614.
Hoarau J Y, Grivet L, Offmann B, Raboin L M, Diorflar J P, Payet J, Hellmann M, D’Hont A, Glaszmann J C. 2002. Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). II. Detection of QTLs for yield components. Theoretical and Applied Genetics, 105, 1027–1037.
Jia G Q, Huang X H, Zhi H, Zhao Y, Zhao Q, Li W J, Chai Y, Yang L F, Liu K Y, Lu H Y, Zhu C R, Lu Y Q, Zhou C C, Fan D L, Weng Q J, Guo Y L, Huang T, Zhang L, Lu T T, Feng Q, et al. 2013. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nature Genetics, 45, 957–961.
Jung K H, An G, Ronald P C. 2008. Towards a better bowl of rice: Assigning function to tens of thousands of rice genes. Nature Reviews Genetics, 9, 91–101.
Koike H, Gillaspie A G. 1989. Mosaic. In: Recaud C, Egan B T, Gillaspie A G, Hughes C G, eds., Disease of Sugarcane - Major Diseases. Elsevier, Amsterdam. pp. 301–322.
Lam E, Shine J, Da Silva J, Lawton M, Bonos S, Calvino M, Carrer H, Silva-Filho M C, Glynn N, Helsel Z, Ma J, Richard E, Souza G M, Ming R. 2009. Improving sugarcane for biofuel: Engineering for an even better feedstock. Global Change Biology Bioenergy, 1, 251–255.
Leister D, Kurth J, Laurie D A, Yano M, Sasaki T, Devos K, Graner A, Schulze-Lefert P. 1998. Rapid reorganization of resistance gene homologues in cereal genomes. Proceedings of the National Academy of Sciences of the United States of America, 95, 370–375.
Li W F, He Z, Li S F, Huang Y K, Zhang Z X, Jiang D M, Wang X Y, Luo Z M. 2011. Molecular characterization of a new strain of Sugarcane streak mosaic virus (SCSMV). Archives of Virology, 156, 2101–2104.
Mandadi K K, Pyle J D, Scholthof K B. 2014. Comparative analysis of antiviral responses in Brachypodium distachyon and Setaria viridis reveals conserved and unique outcomes among C3 and C4 plant defenses. Molecular Plant-Microbe Interactions, 27, 1277.
Mandadi K K, Scholthof K B. 2012. Characterization of a viral synergism in the monocot Brachypodium distachyon reveals distinctly altered host molecular processes associated with disease. Plant Physiology, 160, 1432–1452.
Muthamilarasan M, Prasad M. 2015. Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses. Theoretical and Applied Genetics, 128, 1–14.
Paterson A H, Bowers J E, Feltus F A, Tang H, Lin L, Wang X. 2009. Comparative genomics of grasses promises a bountiful harvest. Plant Physiology, 149, 125–131.
Putra L K, Astono T H, Syamsidi S R C, Djauhari S. 2015. Investigation on transmission modes and host range of Sugarcane streak mosaic virus in sugarcane (Saccharum officinarum L.) in Indonesia. Journal of Agricultural and Crop Research, 3, 59–66.
Putra L K, Kristini A, Achadian E M, Damayanti T A. 2014. Sugarcane streak mosaic virus in Indonesia: Distribution, characterisation, yield losses and management approaches. Sugar Tech, 16, 392–399.
Rae A L, Jackson M A, Nguyen C H, Bonnett G D. 2009. Functional specialization of vacuoles in sugarcane leaf and stem. Tropical Plant Biology, 2, 13–22.
Srikanth J, Subramonian N, Premachandran M N. 2011. Advances in transgenic research for insect resistance in sugarcane. Tropical Plant Biology, 4, 52–61.
Tao Y, Nadege S W, Huang C, Zhang P, Song S, Sun L, Wu Y. 2016. Brachypodium distachyon is a suitable host plant for study of Barley yellow dwarf virus. Virus Genes, 52, 299–302.
Vain P. 2011. Brachypodium as a model system for grass research. Journal of Cereal Science, 54, 1–7.
Viswanathan R, Balamuralikrishnan M. 2005. Impact of mosaic infection on growth and yield of sugarcane. Sugar Tech, 7, 61–65.
Vogel J P, Garvin D F, Mockler T C, Schmutz J, Dan R, Bevan M W, Barry K, Lucas S, Harmonsmith M, Lail K. 2010. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature, 463, 763–768.
Wang J P, Roe B, Macmil S, Yu Q Y, Murray J E, Tang H B, Chen C, Najar F, Wiley G, Bowers J. 2010. Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes. BMC Genomics, 11, 1–17.
Ward C W, Shukla D D. 1991. Taxonomy of potyviruses: Current problems and some solutions. Intervirology, 32, 269–296.
Wei T, Kikuchi A, Moriyasu Y, Suzuki N, Shimizu T, Hagiwara K, Chen H, Takahashi M, Ichiki-Uehara T, Omura T. 2006. The spread of Rice dwarf virus among cells of its insect vector exploits virus-induced tubular structures. Journal of Virology, 80, 8593–8602.
Wu L, Birch R G. 2007. Doubled sugar content in sugarcane plants modified to produce a sucrose isomer. Plant Biotechnology Journal, 5, 109–117.
Wu L J, Zu X F, Wang S X, Chen Y H. 2012. Sugarcane mosaic virus - Long history but still a threat to industry. Crop Protection, 42, 74–78.
Xu D L, Zhou G H, Xie Y J, Mock R, Li R. 2010. Complete nucleotide sequence and taxonomy of Sugarcane streak mosaic virus, member of a novel genus in the family Potyviridae. Virus Genes, 40, 432–439.
Yao W, Yu A L, Xu J S, Geng G L, Zhang M Q, Chen R K. 2004. Analysis and identification for transgenic sugarcane of ScMV-CP gene. Molecular Plant Breeding, 2, 13–18. (in Chinese)
Zhai Y S, Deng Y Q, Cheng G Y, Peng L, Zheng Y R, Yang Y Q, Xu J S. 2015. Sugarcane elongin C is involved in infection by Sugarcane mosaic disease pathogens. Biochemical and Biophysical Research Communications, 466, 312–318.
Zhang J, Nagai C, Yu Q, Pan Y B, Ayala-Silva T, Schnell R J, Comstock J C, Arumuganathan A K, Ming R. 2012. Genome size variation in three Saccharum species. Euphytica, 185, 511–519.
[1] YANG Si-hua, ZHAO Li-rong, DING Sha, TANG Shi-qiao, CHEN Chun, ZHANG Huan-xin, XU Chun-ling, XIE Hui. Study on burrowing nematode, Radopholus similis, pathogenicity test system in tobacco as host[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2652-2664.
No Suggested Reading articles found!