Fusarium oxysporum f. sp. strigae , genetic effect , integrated Striga management , maximum germination distance , sorghum," /> Fusarium oxysporum f. sp. strigae , genetic effect , integrated Striga management , maximum germination distance , sorghum,"/> Fusarium oxysporum f. sp. strigae , genetic effect , integrated Striga management , maximum germination distance , sorghum,"/>
Please wait a minute...
Journal of Integrative Agriculture  2018, Vol. 17 Issue (07): 1585-1593    DOI: 10.1016/S2095-3119(17)61790-8
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Genetic analysis of the maximum germination distance of Striga under Fusarium oxysporum f. sp. strigae biocontrol in sorghum
Emmanuel Mrema1, 2, Hussein Shimelis1, Mark Laing1, Learnmore Mwadzingeni
1 University of KwaZulu-Natal/African Centre for Crop Improvement, Scottsville 3209, South Africa
2 Tumbi Agricultural Research Institute, Tabora, Tanzania
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Maximum germination distance (MGD) is an important component of Striga resistance in sorghum.  The objective of this study was to determine gene action influencing MGD of Striga hermonthica and Striga asiatica among selected sorghum lines treated with a biocontrol agent, Fusarium oxysporum f. sp. strigae (FOS) for effective breeding with Striga resistance, and FOS compatibility.  Twelve sorghum genotypes were selected based on their Striga resistance, FOS compatibility, and superior agronomic performance.  Selected genotypes were crossed using a bi-parental mating design to generate six families for genetic analysis.  Agar-gel assays were used to determine low haustorium initiation factor (LHF) using the 12 parental lines, their F1 progenies, backcross derivatives, and F2 segregants in two sets.  One set had S. hermonthica seed and the other one had S. asiatica seed.  Both were treated with and without FOS.  Genotypes were evaluated using a split-plot design with three replications and MGD data were recorded followed by generation mean analysis.  FOS reduced MGD by 1 cm under both S. hermonthica and S. asiatica infestations.  Additive, dominance, and epistatic gene actions were involved in the control of MGD of the two Striga species in the evaluated populations.  On average, the relative contribution of additive, additive×additive and dominance×dominance genetic effects on the MGD of S. hermonthica and S. asiatica, with FOS, were 20, 33, and 36%; and 21, 32, and 35%, respectively.  Breeding methods exploiting these genetic effects may provide enhanced response to selection for Striga resistance and FOS compatibility in integrated Striga management (ISM) programmes. 
Keywords:  Fusarium oxysporum f. sp. strigae ')" href="#">  
Received: 25 July 2017   Accepted:
Fund: The Alliance for a Green Revolution in Africa (AGRA) is gratefully acknowledged for financial support of the study through the African Centre for Crop Improvement (ACCI)
Corresponding Authors:  Correspondence Learnmore Mwadzingeni, Tel: +27-62-3117075, E-mail: mwadzingenil@ukzn.ac.za    
E-mail this article Fusarium oxysporum f. sp. strigae | genetic effect | integrated Striga management | maximum germination distance | sorghum”. Please open it by linking:https://www.chinaagrisci.com/Jwk_zgnykxen/EN/abstract/abstract11757.shtml" name="neirong"> Fusarium oxysporum f. sp. strigae | genetic effect | integrated Striga management | maximum germination distance | sorghum">
Add to citation manager
E-mail Alert
Articles by authors
Emmanuel Mrema
Hussein Shimelis
Mark Laing
Learnmore Mwadzingeni

Cite this article: 

Emmanuel Mrema, Hussein Shimelis, Mark Laing, Learnmore Mwadzingeni. 2018. Genetic analysis of the maximum germination distance of Striga under Fusarium oxysporum f. sp. strigae biocontrol in sorghum. Journal of Integrative Agriculture, 17(07): 1585-1593.

Anderson V L, Kempthorne O. 1954. A model for the study of quantitative inheritance. Genetics, 39, 883–898.
Badu-Apraku B, Yallou C G, Oyenkunle M. 2013. Genetic gains from selection for high grain yield and Striga resistance in early maturing maize cultivars of three breeding periods under Striga-infested and Striga-free environments. Field Crops Research, 147, 54–67.
Ceballos H, Pandey S, Narro L, Perez-Velazquez J C. 1998. Additive, dominance and epistatic effects for maize grain yield in acid and non-acid soils. Theoretical and Applied Genetics, 96, 662–668.
Ciotola M, Ditommaso A, Watson A K. 2000. Chlamydospore production, inoculation methods and pathogenicity of Fusarium oxysporum M12-4A, a bio-control for Striga hermonthica. Biocontrol Science and Technology, 10, 129–145.
Ejeta G. 2007. The Striga scourge in Africa - A growing pandemic. In: Ejeta G, Gressel J, eds., Integrating New Technologies for Striga Control Towards Ending the Witch-Hunt. World Scientific Publishing, USA. pp. 3–16.
Ejeta G, Butler L G, Hess D E, Obilana T, Reddy B V. 1997. Breeding for Striga resistance in sorghum. In: Rosenow D T, ed., Proceeding International Conference on Genetic Improvement of Sorghum and Pearl Millet. Lubbock, TX, USA.
Ejeta G, Mohammed A, Rich P, Melake-Berhan A, Housley T L, Hess D E. 2000. Selection for specific mechanisms of resistance to Striga in sorghum. In: Haussmann B I G, Koyama M L, Grivet L, Rattunde H F, Hess D E, eds., Breeding for Striga Resistance in Cereals. Proceedings of A Workshop. IITA, Ibadan, Nigeria, 18–20 August 1999. Margraf, Weikersheim, Germany.
Elzein A, Kroschel J. 2006. Host range studies of Fusarium oxysporum Foxy 2: An evidence for a new forma specialis and its implications for Striga control. Journal of Plant Diseases and Protection, 20, 875–887.
Gamble E E. 1962. Gene effects in corn (Zea mays L.). I. Separation and relative importance of gene effects for yield. Canadian Journal of Plant Science, 42, 339–348.
Gurney A L, Slate J, Press M C, Scholes J D. 2006. A novel form of resistance in rice to the angiosperm parasite Striga hermonthica. New Phytologist, 169, 199–208.
Haussmann B I G, Hess D E, Reddy B V S, Welz H G, Geiger H H. 1996. Quantitative-genetic parameters for resistance to Striga hermonthica in sorghum. In: Moreno M T, Cubero J I, Berner D, Joel D, Musselman L J, Parker C, eds., Advances in Parasitic Plant Research. Proceedings of the Sixth International Parasitic Weed Symposium, Cordoba, Spain.
Hayman B I. 1958. The separation of epistatic from additive and dominance variation in generation mean analysis. Heredity, 12, 371–390.
Hearne S. 2009. Control - The Striga conundrum. Pest Management Sciences, 65, 603–614.
Hess D E, Ejeta G, Butler L G. 1992. Selecting sorghum genotypes expressing a quantitative biosynthetic trait that confers resistance to Striga. Phytochemistry, 31, 493–497.
Kang M S. 1994. Applied Quantitative Genetics. Department of Agronomy, Louisiana State University, Baton Rouge.
Kulkarni N, Shinde V. 1985. Genetic analysis of Striga resistance in sorghum parameters of resistance. The Indian Journal of Genetics and Plant Breeding, 45, 545­–551.
Marley P, Kroschel J, Elzien A. 2005. Host specificity of Fusarium oxysporum Schlect (isolate PSM 197), a potential mycoherbicide for controlling Striga spp. in West Africa. Weed Research, 45, 407–412.
Mather K, Jinks L. 1971. Biometrical Genetics. Cornell University Press, Ithaca, New York, USA.
Mrema E, Shimelis H, Laing M, Bucheyeki T. 2016. Farmers’ perceptions of sorghum production constraints and Striga control practices in semi-arid areas of Tanzania. International Journal of Pest Management, 63, 146–156.
Mrema E, Shimelis H, Laing M, Bucheyeki T. 2017. Screening of sorghum genotypes for resistance to Striga hermonthica and S. asiatica and compatibility with Fusarium oxysporum f. sp. strigae. Acta Agriculturae Scandinavica (Section B - Soil and Plant Science), 67, 395–404.
Obilana A B. 1984. Inheritance of resistance to Striga (Striga hermonthica Benth.) in sorghum. Protection Ecology, 7, 305–311.
Rebeka G. 2007. Survey of pathogenic fungi on Striga in North Shewa, Ethiopia and assessment for their biocontrol potential. MSc thesis, Alemaya University, Ethiopia.
Rebeka G, Shimelis H, Laing M D, Tongoona P, Mandefro N. 2013. Evaluation of sorghum genotypes compatibility with Fusarium oxysporum under Striga infestation. Crop Science, 53, 385–393.
Riches C. 2003. Integrated Management of Striga Species on Cereal Crops in Tanzania. Dfid Crop Protection Program, Final Technical Report, Project R7564. Natural Resources Institute, University of Greenwhich, Chatham, Kent, UK.
Rodenburg J, Cissoko M, Kayeke J, Dieng I, Khan Z R, Midega C A O, Onyuka E A, Julie D, Scholes J D. 2015. Do NERICA rice cultivars express resistance to Striga hermonthica (Del.) Benth and Striga asiatica (L.) Kuntze under field conditions. Field Crops Research, 170, 83–94.
SAS Institute. 2011. SAS 9.3 Software. SAS Institute, Cary, NC.
Shayanowako A, Shimelis H, Laing M, Mwadzingeni L. 2017. Resistance breeding and biocontrol of Striga asiatica (L.) Kuntze in maize: A review. Acta Agriculturae Scandinavica (Section B - Soil & Plant Science), 67, 1–11.
Singh R K, Chaudhary B D. 1995. Biometrical Methods in Quantitative Genetic Analysis. Kalyani, Ludhiana, India.
Vogler R K, Ejeta G, Butler L G. 1996. Inheritance of low production of Striga germination stimulant in sorghum. Crop Science, 36, 1185–1191.
Wegmann K. 1996. Biochemistry of host/parasite relations. In: Sixth Parasitic Weed Symposium, Cordoba, Spain.  Eberhard-Karls University, Institute of Chemical Plant Physiology, Èbingen, Germany.
Zimmermann J, Musyoki M K, Cadisch G, Rasche F. 2016. Biocontrol agent Fusarium oxysporum f. sp. strigae has no adverse effect on indigenous total fungal communities and specific AMF taxa in contrasting maize rhizospheres. Fungal Ecology, 23, 1–10.
[1] XU Shi-rui, JIANG Bo, HAN Hai-ming, JI Xia-jie, ZHANG Jin-peng, ZHOU Sheng-hui, YANG Xin-ming, LI Xiu-quan, LI Li-hui, LIU Wei-hua. Genetic effects of Agropyron cristatum 2P chromosome translocation fragments in wheat background[J]. >Journal of Integrative Agriculture, 2023, 22(1): 52-62.
No Suggested Reading articles found!