Please wait a minute...
Journal of Integrative Agriculture  2017, Vol. 16 Issue (11): 2534-2546    DOI: 10.1016/S2095-3119(17)61665-4
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Effects of sesame nectar on longevity and fecundity of seven Lepidoptera and survival of four parasitoid species commonly found in agricultural ecosystems
LIU Kai1, 2*, ZHU Ping-yang3, 4*, LÜ Zhong-xian1, CHEN Gui-hua3, ZHANG Jing-ming1, LÜ Yao-bing1, LU Yan-hui1
1 State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P.R.China
2 State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R.China
3 Jinhua Plant Protection Station, Jinhua 321017, P.R.China
4 School of Agricultural and Wine Sciences, Charles Sturt University, New South Wales 2800, Australia
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  Ecological engineering involves the use of plants to promote establishment, survival and efficiency of natural enemies in agricultural systems.  Some plant species may be hosts or provide resources to some pest species.  We assessed the risks and benefits of sesame (Sesamum indicum L.), as a nectar source for seven economically important Lepidopteran pest and four parasitoid species in a range of vegetable crop systems.  Our results showed that the mean longevities of arthropod parasitoids Pteromalus puparum (L.), Encarsia sophia (Girault & Dodd) and male Microplitis tuberculifer (Wesmael) were significantly extended when fed on sesame flowers compared to the water control.  Sesame flowers had no effect on adult longevities and fecundities of six out of the seven Lepidoptera pest species tested except Plutella xyllostella (L.) females laid more eggs when fed on sesame flowers.  It is likely that the increased fecundity is due to accessibility to nectar at the bottom of corolla because of their smaller body sizes.  Our findings provide a first step towards better understanding of the risks and benefits of using sesame to implement ecological engineering for the management of vegetable pests.
Keywords:  Lepidopteran pests        natural enemies        flowering plant        risks and benefits assessment        ecological engineering  
Received: 13 February 2017   Accepted:
CLC Number: 



This work was funded by the Zhejiang Key Research and Development Program, China (2015C02014) and the earmarked fund for China Agriculture Research System (CARS-01-17).

Corresponding Authors:  Correspondence Lü Zhong-xian, Tel: +86-571-86404077, Fax: +86-571-86404225, E-mail:    
About author:  LIU Kai, E-mail: * These authors contributed equally to this study.

Cite this article: 

LIU Kai, ZHU Ping-yang, Lü Zhong-xian, CHEN Gui-hua, ZHANG Jing-ming, Lü Yao-bing, LU Yan-hui. 2017. Effects of sesame nectar on longevity and fecundity of seven Lepidoptera and survival of four parasitoid species commonly found in agricultural ecosystems. Journal of Integrative Agriculture, 16(11): 2534-2546.

Badenes-Perez F R, Nault B A, Shelton A M. 2006. Dynamics of diamondback moth oviposition in the presence of a highly preferred non-suitable host. Entomologia Experimentalis et Applicata, 120, 23–31.

Baggen L R, Gurr G M. 1998. The influence of food on Copidosoma koehleri (Hymenoptera: Encyrtidae), and the use of flowering plants as a habitat management tool to enhance biological control of potato moth, Phthorimaea operculella (Lepidoptera: Gelechiidae). Biological Control, 11, 9–17.

Baggen L R, Gurr G M, Meats A. 1999. Flowers in tri-trophic systems: Mechanisms allowing selective exploitation by insect natural enemies for conservation biological control. Entomologia Experimentalis et Applicata, 91, 155–161.

Balzan M, Bocci G, Moonen A C. 2014. Augmenting flower trait diversity in wildflower strips to optimise the conservation of arthropod functional groups for multiple agroecosystem services. Journal of Insect Conservation, 18, 713–728.

Balzan M V, Wäckers F L. 2013. Flowers to selectively enhance the fitness of a host-feeding parasitoid: Adult feeding by Tuta absoluta and its parasitoid Necremnus artynes. Biological Control, 67, 21–31.

Berndt L A, Wratten S D, Hassan P G. 2002. Effects of buckwheat flowers on leafroller (Lepidoptera: Tortricidae) parasitoids in a New Zealand vineyard. Agricultural and Forest Entomology, 4, 39–45.

Bianchi F J J A, Wäckers F L. 2008. Effects of flower attractiveness and nectar availability in field margins on biological control by parasitoids. Biological Control, 46, 400–408.

Bigger D S, Chaney W E. 1998. Effects of Iberis umbellata (Brassicaceae) on insect pests of cabbage and on potential biological control agents. Environmental Entomology, 27, 161–167.

Biondi A, Zappalà L, Di Mauro A, Tropea Garzia G, Russo A, Desneux N, Siscaro G. 2016. Can alternative host plant and prey affect phytophagy and biological control by the zoophytophagous mirid Nesidiocoris tenuis? Biocontrol, 61, 79–90.

English-Loeb G, Rhainds M, Martinson T, Ugine T. 2003. Influence of flowering cover crops on Anagrus parasitoids (Hymenoptera: Mymaridae) and Erythroneura leafhoppers (Homoptera: Cicadellidae) in New York vineyards. Agricultural and Forest Entomology, 5, 173–181.

Feng X, Li Z Y, Wu Q J, Chen A D, Wu Y D, Hou Y M, He Y R, Li J H, Xie S H, Zhang J M, Fu W, Ma C S. 2011. Research progress of the resistance management and sustainable control of diamondback moth (Plutella xylostella) in China. Chinese Journal of Applied Entomology, 48, 247–253. (in Chinese)

Fu X W, Xing Z L, Liu Z F, Ali A, Wu K M. 2014. Migration of diamondback moth, Plutella xylostella, across the Bohai Sea in northern China. Crop Protection, 64, 143–149.

Géneau C E, Wäckers F L, Luka H, Daniel C, Balmer O. 2012. Selective flowers to enhance biological control of cabbage pests by parasitoids. Basic and Applied Ecology, 13, 85–93.

Gurr G M, Heong K L, Cheng J A, Catindig J. 2012a. Ecological engineering strategies to manage insect pests in rice. In: Gurr G M, Wratten S D, Snyder W E, Read D M Y, eds., Biodiversity and Insect Pests: Key Issues for Sustainable Management. John Wiley & Sons, UK. pp. 214–229.

Gurr G M, Read D M Y, Catindig J L A, Cheng J A, Liu J, Lan L P, Heong K L. 2012b. Parasitoids of the rice leaffolder Cnaphalocrocis medinalis and prospects for enhancing biological control with nectar plants. Agricultural and Forest Entomology, 14, 1–12.

Gurr G M, Wratten S D, Altieri M A. 2004. Ecological Engineering for Pest Management: Advances in Habitat Manipulation for Arthropods. CSIRO publishing, Collingwood, Australia.

Gurr G M, Zhu Z R, You M S. 2015. The big picture: Prospects for ecological engineering to guide the delivery of ecosystem services in global agriculture. In: Heong K L, Cheng J A, Escalada M M, eds., Rice Planthoppers: Ecology, Management, Socio Economics and Policy. Springer & Zhejiang University Press, China.

Han X L. 1956. On integration of chemical control and biological control. Entomology Knowledge, 2, 57–60. (in Chinese)

Hegazi E M, Khafagi W E, Hassan S A. 2000. Studies on three species of Trichogramma. I. Foraging behaviour for food or hosts. Journal of Applied Entomology, 124, 145–149.

Irvin N A, Hoddle M S, Castle S J. 2007. The effect of resource provisioning and sugar composition of foods on longevity of three Gonatocerus spp., egg parasitoids of Homalodisca vitripennis. Biological Control, 40, 69–79.

Irvin N A, Wratten S D, Chapman R B, Frampton C M, O’Callaghan M. 1999. Effects of floral resources on fitness of the leafroller parasitoid (Dolichogenidea tasmanica) in apples. In: Proceedings of the 52nd New Zealand Plant Protection Conference. New Zealand Plant Protection Society, Wellington, New Zealand. pp. 84–88.

Jamont M, Dubois-Pot C, Jaloux B. 2014. Nectar provisioning close to host patches increases parasitoid recruitment, retention and host parasitism. Basic and Applied Ecology, 15, 151–160.

Jervis M A. 1998. Functional and evolutionary aspects of mouthpart structure in parasitoid wasps. Biological Journal of the Linnean Society, 63, 461–493.

Jervis M A, Ellers J, Harvey J A. 2008. Resource acquisition, allocation, and utilization in parasitoid reproductive strategies. Annual Review of Entomology, 53, 361–385.

Jervis M A, Kidd N A C, Fitton M G, Huddleston T, Dawah H A. 1993. Flower-visiting by hymenopteran parasitoids. Journal of Natural History, 27, 67–105.

Karban R. 1997. Neighbourhood affects a plant’s risk of herbivory and subsequent success. Ecological Entomology, 22, 433–439.

Kevan P G, Baker H G. 1983. Insects as flower visitors and pollinators. Annual Review of Entomology, 28, 407–453.

Kugimiya S, Uefune M, Shimoda T, Takabayashi J. 2010. Orientation of the parasitic wasp, Cotesia vestalis (Haliday) (Hymenoptera: Braconidae), to visual and olfactory cues of field mustard flowers, Brassica rapa L. (Brassicaceae), to exploit food sources. Applied Entomology and Zoology, 45, 369–375.

Lavandero Icaza B, Wratten S D, Didham R K, Gurr G M. 2006. Increasing floral diversity for selective enhancement of biological control agents: A double-edged sward? Basic and Applied Ecology, 7, 236–243.

Lee J C, Andow D A, Heimpel G E. 2006. Influence of floral resources on sugar feeding and nutrient dynamics of a parasitoid in the field. Ecological Entomology, 31, 470–480.

Li Y H, Cheng J L, Zhang N, Wu J X, Yuan X Q. 2014. Effects of high or low temperature treatment on development, survival, and cold tolerance of cotton leafworm, Spodoptera litura (Fabricius). Acta Phytophylacica Sinica, 41, 501–508. (in Chinese)

Liu S S, Yan S. 1998. Brassica IPM in Asia: successes, challenges, and opportunities. In: Zalucki M P, Drew R A I, White G G, eds., Pest Management-Future Challenges, Proceedings of the Sixth Australasian Applied Entomological Research Conference. The University of Queensland, Dept Hosp Tourism Prop Management Lawes, Brisbane, Australia. pp. 85–97.

Liu Y, Shen D X, Zhou F, Wang G R, An C J. 2014. Identification of immunity-related genes in Ostrinia furnacalis against Entomopathogenic fungi by RNA-Seq analysis. PLOS ONE, 9, e86436.

Liu Y Q, Shi Z H, Zalucki M P, Liu S S. 2014. Conservation biological control and IPM practices in Brassica vegetable crops in China. Biological Control, 68, 37–46.

Lu Z X, Zhu P Y, Gurr G M, Zheng X S, Chen G H, Heong K L. 2015. Rice pest management by ecological engineering: A pioneering attempt in China. In: Heong K L, Cheng J A, Escalada M M, eds., Rice Planthoppers: Ecology, Management, Socio Economics and Policy. Springer & Zhejiang University Press, China. pp. 163–180.

Lu Z Y, Ran H F, Liu W X, Qu Z G, Li J C. 2013. Mass rearing methods of Mythimna separata (Walker) and its parasitoid, Microplitis tuberculifer (Wesmael). Journal of Environmental Entomology, 35, 683–687. (in Chinese)

Lundgren J G, Wyckhuys K A G, Desneux N. 2009. Population responses by Orius insidiosus to vegetational diversity. Biocontrol, 54, 135–142.

Luo C, Liu T X. 2011. Fitness of Encarsia sophia (Hymenoptera: Aphelinidae) parasitizing Trialeurodes vaporariorum and Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Science, 18, 84–91.

Macfadyen S, Davies A P, Zalucki M P. 2015. Assessing the impact of arthropod natural enemies on crop pests at the field scale. Insect Science, 22, 20–34.

Maselou D A, Perdikis D C, Sabelis M W, Fantinou A A. 2014. Use of plant resources by an omnivorous predator and the consequences for effective predation. Biological Control, 79, 92–100.

Parolin P, Bresch C, Poncet C, Desneux N. 2012. Functional characteristics of secondary plants for increased pest management. International Journal of Pest Management, 58, 369–377.

Patt J M, Hamilton G C, Lashomb J H. 1997. Foraging success of parasitoid wasps on flowers: Interplay of insect morphology, floral architecture and searching behavior. Entomologia Experimentalis et Applicata, 83, 21–30.

Pfiffner L, Luka H, Schlatter C, Juen A, Traugott M. 2009. Impact of wildflower strips on biological control of cabbage lepidopterans. Agriculture, Ecosystems & Environment, 129, 310–314.

Potts S G, Imperatriz-Fonseca V, Ngo H T, Aizen M A, Biesmeijer J C, Breeze T D, Dicks L V, Garibaldi L A, Hill R, Settele J, Vanbergen A J. 2016. Safeguarding pollinators and their values to human well-being. Nature, 540, 220–229.

Razmjou J, Naseri B, Hemati S. 2014. Comparative performance of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) on various host plants. Journal of Pest Science, 87, 29–37.

Rivero A, Casas J. 1999. Incorporating physiology into parasitoid behavioral ecology: The allocation of nutritional resources. Researches on Population Ecology, 41, 39–45.

Romeis J, Wäckers F L. 2002. Nutritional suitability of individual carbohydrates and amino acids for adult Pieris brassicae. Physiological Entomology, 27, 148–156.

Rosenheim J A. 2011. Stochasticity in reproductive opportunity and the evolution of egg limitation in insects. Evolution, 65, 2300–2312.

Segoli M, Rosenheim J A. 2013. Spatial and temporal variation in sugar availability for insect parasitoids in agricultural fields and consequences for reproductive success. Biological Control, 67, 163–169.

Sharma H C, Sullivan D, Sharma M M, Shetty S V R. 2004. Influence of weeding regimes and pearl millet genotypes on parasitism of the Oriental armyworm, Mythimna separata. BioControl, 49, 689–699.

Simpson M, Gurr G M, Simmons A T, Wratten S D, James D G, Leeson G, Nicol H I, Orre-Gordon G U S. 2011. Attract and reward: Combining chemical ecology and habitat manipulation to enhance biological control in field crops. Journal of Applied Ecology, 48, 580–590.

Steppuhn A, Wäckers F L. 2004. HPLC sugar analysis reveals the nutritional state and the feeding history of parasitoids. Functional Ecology, 18, 812–819.

Tena A, Wäckers F L, Heimpel G E, Urbaneja A, Pekas A. 2016. Parasitoid nutritional ecology in a community context: the importance of honeydew and implications for biological control. Current Opinion in Insect Science, 14, 100–104.

Wang X Y, Zhou L H, Zhong T, Xu G Q. 2014. Genetic variation, phylogeographic structure of Spodoptera exigua in the welsh onion-producing areas of North China. Journal of Applied Entomology, 138, 612–622.

Watt W, Hoch P, Mills S. 1974. Nectar resource use by Colias butterflies. Oecologia, 14, 353–374.

Wäckers F L. 1999. Gustatory response by the Hymenopteran parasitoid Cotesia glomerata to a range of nectar and honeydew sugar. Journal of Chemical Ecology, 25, 2863–2877.

Wäckers F L. 2001. A comparison of nectar- and honeydew sugars with respect to their utilization by the hymenopteran parasitoid Cotesia glomerata. Journal of Insect Physiology, 47, 1077–1084.

Wäckers F L. 2004. Assessing the suitability of flowering herbs as parasitoid food sources: Flower attractiveness and nectar accessibility. Biological Control, 29, 307–314.

Wäckers F L. 2005. Suitability of (extra-)floral nectar, pollen, and honeydew as insect food sources. In: Wäckers F L, Van Rijn P C J, Bruin J, eds., Plant-Provided Food for Carnivorous Insects: A Protective Mutualism and its Applications. Cambridge University Press, Cambridge. pp. 17–74.

Wäckers F L, van Rijn P C J. 2005. Food for protection: An introduction. In: Wäckers F L, van Rijn P C J, Bruin J, eds., Plant-Provided Food for Carnivorous Insects. Cambridge University Press, U.K. pp. 1–14.

Wäckers F L, van Rijn P C J. 2012. Pick and mix: Selecting flowering plants to meet the requirements of target biological control insects. In: Gurr G M, Wratten S D, Snyder W E, Read D M Y, eds., Biodiversity and Insect Pests: Key Issues for Sustainable Management. John Wiley & Sons, UK. pp. 214–229.

Wäckers F L, Romeis J, van Rijn P C J. 2007. Nectar and pollen feeding by insect herbivores and implications for multitrophic interactions. Annual Review of Entomology, 52, 301–323.

Westphal C, Vidal S, Horgan F G, Gurr G M, Escalada M, Van Chien H, Tscharntke T, Heong K L, Settele J. 2015. Promoting multiple ecosystem services with flower strips and participatory approaches in rice production landscapes. Basic and Applied Ecology, 16, 681–689.

Williams L III, Roane T M. 2007. Nutritional ecology of a parasitic wasp: Food source affects gustatory response, metabolic utilization, and survivorship. Journal of Insect Physiology, 53, 1262–1275.

Winkler K, Buitriago L, Wäckers F L, van Lenteren J C. 2005a. Herbivores and their parasitoids show differences in abundance on eight different nectar producing plants. In: Proceedings of the Netherlands Entomological Society Meeting. Wageningen University, The Netherlands. pp. 125–130.

Winkler K, Wäckers F L, Bukovinszkine-Kiss G, van Lenteren J. 2006. Sugar resources are vital for Diadegma semiclausum fecundity under field conditions. Basic and Applied Ecology, 7, 133–140.

Winkler K, Wäckers F L, Kaufman L V, Larraz V, van Lenteren J C. 2009a. Nectar exploitation by herbivores and their parasitoids is a function of flower species and relative humidity. Biological Control, 50, 299–306.

Winkler K, Wäckers F L, Pinto D M. 2009b. Nectar-providing plants enhance the energetic state of herbivores as well as their parasitoids under field conditions. Ecological Entomology, 34, 221–227.

Winkler K, Wäckers F L, Stingli A, van Lenteren J C. 2005b. Plutella xylostella (diamondback moth) and its parasitoid Diadegma semiclausum show different gustatory and longevity responses to a range of nectar and honeydew sugars. Entomologia Experimentalis et Applicata, 115, 187–192.

Winkler K, Wäckers F L, Termorshuizen A, van Lenteren J. 2010. Assessing risks and benefits of floral supplements in conservation biological control. BioControl, 55, 719–727.

Wratten S D, Gillespie M, Decourtye A, Mader E, Desneux N. 2012. Pollinator habitat enhancement: Benefits to other ecosystem services. Agriculture, Ecosystems & Environment, 159, 112–122.

Yin J, Cao Y Z, Luo L Z, Hu Y. 2005. Oviposition preference of the meadow moth, Loxostege sticticalis L., on different host plants and its chemical mechanism. Acta Ecologica Sinica, 25, 1844–1852. (in Chinese)

Yu H L, Zhang Y J, Wu K M, Wyckhuys K G, Guo Y Y. 2009. Flight potential of Microplitis mediator, a parasitoid of various lepidopteran pests. BioControl, 54, 183–193.

Zhao J, Guo X J, Tan X L, Desneux N, Zappala L, Zhang F, Wang S. 2017. Using Calendula officinalis as a floral resource to enhance aphid and thrips suppression by the flower bug Orius sauteri (Hemiptera: Anthocoridae). Pest Management Science, 73, 515–520.

Zhou C Q, Li Y X, Liu T X, Zhang F, Luo C. 2010. Development and morphology of female immature of Encarsia Sophia and their longevity and fecundity. Chinese Journal of Biological Control, 26, 113–118. (in Chinese)

Zhu P Y, Gurr G M, Lu Z X, Heong K L, Chen G H, Zheng X S, Xu H X, Yang Y J. 2013a. Laboratory screening supports the selection of sesame (Sesamum indicum) to enhance Anagrus spp. parasitoids (Hymenoptera: Mymaridae) of rice planthoppers. Biological Control, 64, 83–89.

Zhu P Y, Lu Z X, Heong K L, Chen G H, Zheng X S, Xu H X, Yang Y J, Nicol H I, Gurr G M. 2014. Selection of nectar plants for use in ecological engineering to promote biological control of rice pests by the predatory bug, Cyrtorhinus lividipennis, (Heteroptera: Miridae). PLOS ONE, 9, e108669.

Zhu P Y, Sheng X Q, Fang D H, Chen G H, Lu Z X. 2013b. Effect of feeding parental adults with plant flowers on growth and predatory capacity of next generation of mirid bug Cyrtorhinus lividipennis. China Plant Protection, 33, 17–21. (in Chinese)

Zhu P Y, Wang G W, Zheng X S, Tian J C, Lu Z X, Heong K L, Xu H X, Chen G H, Yang Y J, Gurr G M. 2015. Selective enhancement of parasitoids of rice Lepidoptera pests by sesame (Sesamum indicum) flowers. BioControl, 60, 157–167.
[1] ZHENG Ya-qiang, ZHANG Li-min, CHEN Bin, YAN Nai-sheng, GUI Fu-rong, ZAN Qing-an, DU Guang-zu, HE Shu-qi, LI Zheng-yue, GAO Yu-lin, XIAO Guan-li.
Potato/Maize intercropping reduces infestation of potato tuber moth, Phthorimaea operculella (Zeller) by the enhancement of natural enemies
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 394-405.
[2] TONG Hao-jie, AO Yan, LI Zi-hao, WANG Ying, JIANG Ming-xing. Invasion biology of the cotton mealybug, Phenacoccus solenopsis Tinsley: Current knowledge and future directions[J]. >Journal of Integrative Agriculture, 2019, 18(4): 758-770.
No Suggested Reading articles found!