Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Genetic dissection of pleiotropic loci associated with copper content and quality traits in wheat grain

Xueyan Jing1, 2, Zhankui Zeng1, 2, Chang Liu1, 2, Yue Zhao1, 2, Qunxiang Yan1, 2, Chunping Wang1, 2#

1 College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China

2 The Shennong Laboratory, Zhengzhou 450099, China

  Highlights  

Three novel and stable QTLs were detected for copper content and quality traits in wheat grain.

Pleiotropic Effects of three QTLs can significantly increase copper content and quality traits.

A KASP marker was developed for molecular-assisted breeding to enhance nutritional quality traits in wheat.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

小麦是全球主食及膳食矿物质的要来源,提供主要的微量元素。铜(Cu)是小麦生长发育过程中必需的营养素,在多种代谢和生化反应中起关键作用。同时,Cu分人体组织和器官中参与人体生理代谢Cu缺乏可能导致毛发异常、贫血、骨骼异常甚至脑功能障碍等问题。本研究基于DArT标记构建的遗传图谱,以Avocet/Chilero构建164F6 RILsAC群体)和以Avocet/Huites构建175F6 RILsAH群体)两个重组自交系(RIL)群体的籽粒Cu含量进行QTL定位。共定位4QTLQGCu.haust-AH-7DQGCu.haust-AC-5B.2QGCu.haust-AH-5B.1QGCu.haust-AH-1B1B5B7D染色体上且均超过2个环境QGCu.haust-AH-7D且稳定的QTL3个环境中被定位表型变异(PVE)解释率为8.70%9.34%,物理区间为99.96100.66 MbQGCu.haust-5B是一个共定位且主QTL,其物理区间为446.01450.57 Mb,分别解释了AC群体在两个环境中QGCu.haust-AC-5B.2421.44-607.84 Mb)与AH群体在两个环境中QGCu.haust-AH-5B.1446.01450.57 Mb)之间11.28%26.02%的表型变异。QGCu.haust-AH-1B稳定QTL在两种环境中对表型变异的解释9.79%15.96%,其物理区间为340.46 Mb416.77 Mb携带QGCu.haust-AH-1BQGCu.haust-5BQGCu.haust-AH-7D有利等位基因的品系与携带不利等位基因的品系相比籽粒Cu含量显著提高了13.63%14.34%10.54%P<0.01)。通过聚合效应和多效性效应分析,结果表明聚合三个QTL的有利等位基因分别使籽粒Cu含量、籽粒蛋白质含量、湿面筋含量和沉降值显著提高30.82%18.65%19.16%52.43%P<0.01并开发了标记KACu-5B-2。遗传效应分析显示,与携带不利单倍型的Hap2相比,有利单倍型Hap1使籽粒铜含量、籽粒蛋白质含量、湿面筋含量和沉降值分别显著提高8.1%5.12%5.32%5.52%P<0.05)。本研究为克隆小麦籽粒Cu含量相关基因提供了理论基础和技术支持,有助于分子标记辅助选择(MAS)和富铜生物强化育种策略。



Abstract  

Wheat is a major staple food and primary source of dietary minerals in the world, providing vital trace elements. Copper (Cu) is an essential nutrient for the development, and it plays a crucial role in various metabolic and biochemical reactions in wheat. Meanwhile, Cu is distributed in human tissues and organs and involved in human physiological functions. Cu deficiency may lead to abnormal hair, anemia, abnormal bones and even disorders of brain function. In this study, we detected QTLs for Cu content in two recombinant inbred line (RIL) populations, including 164 F6 RILs from a cross between Avocet and Chilero (AC population) and 175 F6 RILs from a cross between Avocet and Huites (AH population). Four QTLs (QGCu.haust-AH-7DQGCu.haust-AC-5B.2QGCu.haust-AH-5B.1QGCu.haust-AH-1B) were detected on chromosomes 1B, 5B and 7D across more than two environments by QTL mapping with diversity array technology (DArT) marker. QGCu.haust-AH-7D, a major and stable QTL was detected in three environments explaining the phenotypic variance (PVE) from 8.70 to 9.34% with a physical interval of 99.96 to 100.66 Mb. QGCu.haust-5B, a co-localization and major QTL ranged from 446.01 to 450.57 Mb and explained 11.28% to 26.02% of the phenotypic variance between QGCu.haust-AC-5B.2 (421.44-607.84 Mb) in AC population and QGCu.haust-AH-5B.1 (446.01 to 450.57 Mb) of AH population in two environments. QGCu.haust-AH-1B, a stable QTL was explained 9.79 to 15.96% of the phenotypic variance with a physical interval of 340.46 Mb to 416.77 Mb in two environments. These favorable alleles of QGCu.haust-AH-1B, QGCu.haust-5B and QGCu.haust-AH-7D significantly increased grain Cu content by 13.63, 14.34 and 10.54% (P<0.01) compared with lines carrying unfavorable alleles. Using pyramiding and pleiotropic effects analysis with quality traits, the pyramiding of favorable alleles of the three QTLs significantly increased grain Cu content, grain protein content, wet gluten content and sedimentation value by 30.82, 18.65, 19.16, and 52.43% (P<0.01), respectively. A high-throughput competitive allele specific PCR (KASP) marker, KACu-5B-2 was developed and verified in the natural population (ZD population). Genetic effect revealed that favorable haplotype Hap1 significantly rised up grain Cu content, grain protein content, wet gluten content and sedimentation value by 8.1%, 5.12, 5.32, and 5.52% compared to Hap2 with unfavorable haplotype (P<0.05). This study provides a theoretical basis and technical support for cloning wheat grain Cu content related genes, facilitating molecular marker-assisted selection (MAS) and optimizing Cu-enriched biofortification breeding strategies.

Keywords:  wheat (Triticum aestivum L.)       Cu content       co-location       pleiotropic effects  
Online: 23 January 2026  
Fund: 

The authors wish to thank the wheat molecular breeding group of Henan University of Science and Technology for providing wheat seeds. This work was supported by Henan Province Major Science and Technology Project, China (251100110200), the Key Research Project of the Shennong Laboratory, China (SN01-2022-01), the National Natural Science Foundation of China (32401870).

About author:  #Correspondence Chunping Wang, E-mail: chunpingw@haust.edu.cn

Cite this article: 

Xueyan Jing, Zhankui Zeng, Chang Liu, Yue Zhao, Qunxiang Yan, Chunping Wang. 2026. Genetic dissection of pleiotropic loci associated with copper content and quality traits in wheat grain. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2026.01.032

Araya M, Olivares M, Pizarro F. 2007. Copper in human health, International Journal of Environment and Health1, 608.

Bálint A F, Kovács G, Erdei L, Sutka J. 2001. Comparison of the Cu, Zn, Fe, Ca and Mg contents of the grains of wild ancient and cultivated wheat species. Cereal Research Communications29, 375–382.

Bálint A F, Röder M S, Hell R, Galiba G, Börner A. 2007. Mapping of QTLs affecting copper tolerance and the Cu, Fe, Mn and Zn contents in the shoots of wheat seedlings. Biologia Plantarum51, 129–134.

Bi J G, Zeng Z K, Li Q, Hong Z Z, Yan Q X, Zhao Y, Wang C P. 2024. QTL mapping and KASP marker development of grain quality-relating traits in two wheat RIL populations. Acta Agronomica Sinica50, 1669-1683. (in Chinese)

Chen J Y. 2023. QTL analysis and application of trace elements in wheat RIL population. MSc thesis, Shandong Agricultural University, China. (in Chinese)

Chhetri S K, Mills R J, Shaunak S, Emsley H C A. 2014. Copper deficiency. The British Medical Journal348, g3691.

Crespo-Herrera L A, Velu G, Singh R P. 2016. Quantitative trait loci mapping reveals pleiotropic effect for grain iron and zinc concentrations in wheat. Annals of Applied Biology, 169, 27–35.

Cu S T, Guild G E, Nicolson A, Govindan V, Singh R P, Stangoulis J. 2020. Genetic dissection of zinc, iron, copper, manganese and phosphorus in wheat (Triticum aestivum L.) grain and rachis at two developmental stages. Plant Science, 291, 0168–9452.

Govindan V, Singh R P, Juliana P, Mondal S, Bentley A R. 2022. Mainstreaming grain zinc and iron concentrations in CIMMYT wheat germplasm. Journal of Cereal Science, 105, 103473. 

Gupta P K, Balyan H S, Sharma S, Kumar R. 2020. Biofortification and bioavailability of Zn, Fe and Se in wheat: Present status and future prospects. Theoretical and Applied Genetics134, 1–35.

Hacisalihoglu G, Hart J J. 2001. High and low-affinity zinc transport systems and their possible role in zinc efficiency in bread wheat. Plant Physiology, 125, 456–463.

Hacisalihoglu G, Hart J J, Wang Y H, Cakmak I, Kochian L. 2003. Zinc efficiency is correlated with enhanced expression and activity of zinc-requiring enzymes in wheat. Plant Physiology131, 595–602.

Hong Z Z, Zeng Z K, Li J J, Yan X F, Song J Q, Yan Q X, Li Q, Zhao Y, Liu C, Jing X Y, Wang C P. 2025. Gene mining and genetic effect analysis reveal novel loci, TaZn-2DS associated with zinc content in wheat grain. Agriculture15, 124. 

Huang Y, Zhao Q, Li X, Long D, Zeng J, Wu D, Sha L, Fan X, Kang H, Zhang H, Zhou Y, Wang Y, Cheng Y. 2024. A novel major QTL underlying grain copper concentration in common wheat (Triticum aestivum L ). BMC Genomics, 25, 1198. 

Jiang L N, Hao B Z, Hou F, Li C X, Wang Z M. 2008. Dynamic accumulation of Fe, Zn , Mn and Cu in grains of common wheat during grain-filling stage. Journal of Triticeae Crops, 28, 301–306. (in Chinese)

Leonova I N, Kiseleva A A, Salina E A. 2024. Identification of genomic regions conferring enhanced Zn and Fe concentration in wheat varieties and introgression lines derived from wild relatives. International Journal of Molecular Sciences, 25, 10556. 

Li Q, Zeng Z K, Zhao Y, Li J C, Chen F, Wang C P. 2024. Genome-wide association study and linkage mapping reveal TaqW-6B associated with water-extractable arabinoxylan content in wheat grain. Theoretical and Applied Genetics, 137, 166.

Liu Y, Chen Y, Yang Y, Zhang Q F, Fu B S, Cai J, Guo W, Shi L, Wu J Z, Chen Y H. 2020. A thorough screening based on QTLs controlling zinc and copper accumulation in the grain of different wheat genotypes. Environmental Science and Pollution Research, 28, 15043–15054.

Liu Z H, Wang H Y, Wang X E, Zhang G P, Chen P D, Liu D J. 2006. Genotypic and spike positional difference in grain phytase activity, phytate, inorganic phosphorus, iron, and zinc contents in wheat. Journal of Cereal Science, 44, 212-219. 

Luo Q L, Zheng Q, Hu P, Liu L Q, Yang G T, Li H W, Li B, Li Z S. 2021. Mapping QTL for agronomic traits under two levels of salt stress in a new constructed RIL wheat population. Theoretical and Applied Genetics134, 1–19.

Ma J H, Qi S Y, Yuan M, Zhao D Y, Zhang D J, Feng J Y, Wang J N, Li W, Song C X, Wang T L, Zeng Q D, Wu J H, Han D J, Jiang L. 2022a. A genome-wide association study revealed the genetic variation and candidate genes for grain copper content in bread wheat (Triticum aestivum L). Food & Function, 13, 5177–5188.

Ma J H, Zhao D Y, Tang X X, Yuan M, Zhang D J, Xu M Y, Duan Y Z, Ren H Y, Zeng, Q D, Wu J H, Han D J, Li T, Jiang L N. 2022b. Genome-wide association study on root system architecture and identification of candidate genes in wheat (Triticum aestivum L). International Journal of Molecular Sciences, 23, 1843–1843.

Ma S, Wang M, Wu J, Guo W, Chen Y, Li G, Wang Y, Shi W, Xia G, Fu D, Kang Z S, Ni F. 2021. WheatOmics: A platform combining multiple omics data to accelerate functional genomics studies in wheat. Molecular Plant14, 1965–1968.

McCouch S R, Cho Y, Yano M. 1997. Report on QTL nomenclature. Rice Genetic Newsletter14, 11–13.

Pan Y B. 2020. Genetic and mapping analysis of zinc, iron and copper content in common wheat grains. MSc thesis, Henan Agricultural University, China(in Chinese)

Ren P X, Zhao D H, Zeng Z K, Yan X F, Zhao Y, Lan C X, Wang C P. 2022. Pleiotropic effect analysis and marker development for grain zinc and iron concentrations in spring wheat. Molecular Breeding42, 49.

Sagwal V, Sihag P, Singh Y, Mehla S, Kapoor P; Balyan P, Kumar A, Rouf Mir R, Dhankher O P, Kumar U. 2022. Development and characterization of nitrogen and phosphorus use efficiency responsive genic and miRNA derived SSR markers in wheat. Heredity128, 391–401.

Shariatipour N, Heidari B, Richards C M. 2021. Meta-analysis of QTLome for grain zinc and iron contents in wheat (Triticum aestivum L). Euphytica, 217, 86.

Shi R, Tong Y P, Jing R L, Zhang F S, Zou C Q. 2013. Characterization of quantitative trait loci for grain minerals in hexaploid wheat (Triticum aestivum L). Journal of Integrative Agriculture, 12, 1512–1521.

Shi X, Chen Y T, Wang S F, Zhang X L, Yuan Y. 2011. Growth and metal uptake of three woody species in lead/zinc and copper mine tailing. Acta Ecologica Sinica, 31, 1818-1826.

Srinivasa J, Arun B, Mishra V K, Singh G P, Velu G, Babu R, Vasistha N K, Joshi A K. 2014. Zinc and iron concentration QTL mapped in a Triticum spelta × T aestivum cross. Theoretical and Applied Genetics127, 1643–1651. 

Sun M J, Luo Q L, Zheng Q, Tong J Y, Wang Y, Song J, Zhang Y L, Pu Z J, Zheng J M, Liu L Z, Zhou A D, Rasheed A, Li M, Cao S G, Xia X C, He Z H, Hao Y F. 2023. Molecular characterization of stable QTL and putative candidate genes for grain zinc and iron concentrations in two related wheat populations. Theoretical and Applied Genetics, 36, 217.

Sun M J, Tong J Y, Dong Y, Pu Z J, Zheng J M, Zhang Y L, Zhang X Y, Hao C Y, Xu X W, Cao Q, Rasheed A, Ali M B, Cao S H, Xia X C, He Z, Ni Z F, Hao Y F. 2024. Molecular characterization of QTL for grain zinc and iron concentrations in wheat landrace Chinese Spring, Theoretical and Applied Genetics137, 148.

Vijay KT, Nidhi R, Parveen C, Kumari N, Renuka A, Gursharn S R, Harcharan S D, Beat K, Kuldeep S. 2009. Mapping of quantitative trait loci for grain iron and zinc concentration in diploid A genome wheat. The Journal of Heredity100, 771.

Wang Y, Xu X, Hao Y F, Zhang Y, Liu Y, Pu Z, Tian Y, Xu D, Xia X C, He Z H, Zhang Y. 2021. QTL mapping for grain zinc and iron concentrations in bread wheat. Frontiers in Nutrition, 8, 680391.

Wang Y Y, Zeng Z K, Li J C, Zhao D H, Zhao Y, Chen P, Lan C X, Wang C P. 2023. Identification and validation of new quantitative trait loci for spike-related traits in two RIL populations. Molecular Breeding43, 64.

Welch R M, House W A. 1995. Meat Factors in animal products that enhance iron and zinc bioavailability: Implications for improving the nutritional quality of seeds and grains. Cornell Nutrition Conference for Feed Manufacturers1, 58–66.

Wojtkowiak K, Stępień A. 2015. Nutritive value of spelt (Triticum aestivum spp spelta L ) as influenced by the foliar application of copper, zinc and manganese. Zemdirbyste-Agriculture102, 389–396.

Yang L L, Liu X J, Xu J, Mao R Z. 2008. Progress in research of micronutrients content in wheat grain. Journal of Triticeae Crops, 28, 1113–1117. (in Chinese)  

Yang T. 2022. Physiological pathways and QTL analysis of copper and manganese accumulation in Polish wheat grains. MSc thesis, Sichuan Agricultural University, China. (in Chinese)

Zhang H, Lian C, Shen Z. 2009. Proteomic identification of small, copper-responsive proteins in germinating embryos of Oryza sativa. Annals of Botany, 103, 923-930.

Zhao L, Pan Y B, Dong Z D, Zheng Y T, Liu J Y, Geng J Y, Ren Y, Zhang N, Chen F. 2020. Investigation and genome-wide association study of grain copper content in Chinese common wheat. Journal of Cereal Science95, 102991.

Zhao Y L. 2005. QTLs mapping and cloning of wheat micronutrient-related genes. PSc thesis, Chinese Academy of Agricultural Sciences, China. (in Chinese)

Zhou Z F, Shi X, Zhao G Q, Qin M M, Ibba M I, Wang Y H, Li W X, Yang P, Wu Z Q, Lei Z S, Wang J S. 2020. Identification of novel genomic regions and superior alleles associated with Zn accumulation in wheat using a genome-wide association analysis method, International Journal of Molecular Sciences, 21, 1928.

Zimmermann M, Clarke O, Gulbis J M, Keizer D W, Jarvis R S, Cobbett C, Hinds M G, Xiao Z G, Wedd A G. 2009. Metal binding affinities of Arabidopsis zinc and copper transporters: Selectivities match the relative, but not the absolute, affinities of their amino-terminal domains. Biochemistry, 48, 11640-11654.

No related articles found!
No Suggested Reading articles found!