|
Appuhn A, Joergensen R G. 2006. Microbial colonisation of roots as a function of plant species. Soil Biology and Biochemistry, 38, 1040–1051.
Barker K R. 1985. Nematode extraction and bioassays. In: Barker K R, ed., An Advanced Treatise on Meloidogyne Methodology. vol 2. North Carolina State University Graphics, Raleigh. pp. 19–35.
Bolyen E, Rideout J R, Dillon M R, Bokulich N A, Abnet C C, Al-Ghalith G A, Alexander H, Alm E J, Arumugam M, Asnicar F, Bai Y, Bisanz J E, Bittinger K, Brejnrod A, Brislawn C J, Brown C T, Callahan B J, Caraballo-Rodríguez A M, Chase J, Cope E K et al. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37, 852–857.
Camenzind T, Mason-Jones K, Mansour I, Rillig M C, Lehmann J. 2023. Formation of necromass-derived soil organic carbon determined by microbial death pathways. Nature Geoscience, 16, 115–122.
Crowther T W, Boddy L, Hefin Jones T. 2012. Functional and ecological consequences of saprotrophic fungus-grazer interactions. The ISME Journal, 6, 1992–2001.
Dini-Andreote F, Stegen J C, Van Elsas J D, Salles J F. 2015. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proceedings of the National Academy of Sciences of the United States of America, 112, E1326–E1332.
Erktan A, Or D, Scheu S. 2020. The physical structure of soil: Determinant and consequence of trophic interactions. Soil Biology and Biochemistry, 148, 107876.
Fu S, Ferris H, Brown D, Plant R. 2005. Does the positive feedback effect of nematodes on the biomass and activity of their bacteria prey vary with nematode species and population size? Soil Biology and Biochemistry, 37, 1979–1987.
Gardes M, Bruns T D. 1993. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113–118.
Gong X, Qiao Z H, Yao H F, Zhao D, Eisenhauer N, Scheu S, Liang C, Liu M Q, Zhu Y G, Sun X. 2024. Urbanization simplifies soil nematode communities and coincides with decreased ecosystem stability. Soil Biology and Biochemistry, 190, 109297.
Henseler J, Ringle C M, Sinkovics R R. 2009. The use of partial least squares path modeling in international marketing. Advances in International Marketing, 20, 277-319.
Holátko J, Brtnický M, Kučerík J, Kotianová M, Elbl J, Kintl A, Kynický J, Benada O, Datta R, Jansa J. 2021. Glomalin-Truths, myths, and the future of this elusive soil glycoprotein. Soil Biology and Biochemistry, 153, 108116.
Huang X, Wang J J, Dumack K, Liu W P, Zhang Q C, He Y, Di H J, Bonkowski M, Xu J M, Li Y. 2021. Protists modulate fungal community assembly in paddy soils across climatic zones at the continental scale. Soil Biology and Biochemistry, 160, 108358.
Hubbell S P. 2005. Neutral theory in community ecology and the hypothesis of functional equivalence. Functional Ecology, 19, 166–172.
Irving T B, Alptekin B, Kleven B, Ané J M. 2021. A critical review of 25 years of glomalin research: A better mechanical understanding and robust quantification techniques are required. New Phytologist, 232, 1572–1581.
Jiang Y, Li S Z, Barnes A D, Liu J, Zhu G, Luan L, Dini-Andreote F, Geisen S, Sun B. 2023. Unraveling the importance of top-down predation on bacterial diversity at the soil aggregate level. Geoderma, 439, 116658.
Jiang Y, Liu M Q, Zhang J B, Chen Y, Chen X Y, Chen L J, Li H X, Zhang X X, Sun B. 2017. Nematode grazing promotes bacterial community dynamics in soil at the aggregate level. The ISME Journal, 11, 2705–2717.
Jiang Y, Luan L, Hu K J, Liu M Q, Chen Z Y, Geisen S, Chen X Y, Li H X, Xu Q S, Bonkowski M, Sun B. 2020. Trophic interactions as determinants of the arbuscular mycorrhizal fungal community with cascading plant-promoting consequences. Microbiome, 8, 1–14.
Jiang Y, Sun B, Jin C, Wang F. 2013. Soil aggregate stratification of nematodes and microbial communities affects the metabolic quotient in an acid soil. Soil Biology and Biochemistry, 60, 1–9.
Kennedy P G, Maillard F. 2023. Knowns and unknowns of the soil fungal necrobiome. Trends in Microbiology, 31, 173–180.
Kou X C, Morriën E, Tian Y J, Zhang X K, Lu C Y, Xie H T, Liang W J, Li Q, Liang C. 2023. Exogenous carbon turnover within the soil food web strengthens soil carbon sequestration through microbial necromass accumulation. Global Change Biology, 29, 4069–4080.
Li H, Yang S, Semenov M V, Yao F, Ye J, Bu R C, Ma R A, Lin J J, Kurganova I, Wang X G, Deng Y, Kravchenko I, Jiang Y, Kuzyakov Y. 2021. Temperature sensitivity of SOM decomposition is linked with a K-selected microbial community. Global Change Biology, 27, 2763–2779.
Liang C, Amelung W, Lehmann J, Kästner M. 2019. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology, 25, 3578-3590.
Liang C, Schimel J P, Jastrow J D. 2017. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2, 17105.
Liao H, Hao X L, Zhang Y C, Qin F, Xu M, Cai P, Chen W L, Huang Q Y. 2022. Soil aggregate modulates microbial ecological adaptations and community assemblies in agricultural soils. Soil Biology and Biochemistry, 172, 108769.
Ling J, Dungait J A J, Delgado-Baquerizo M, Cui Z L, Zhou R R, Zhang W S, Gao Q, Chen Y X, Yue S C, Kuzyakov Y, Zhang F S, Chen X P, Tian J. 2025. Soil organic carbon thresholds control fertilizer effects on carbon accrual in croplands worldwide. Nature Communications, 16, 1234.
Luan L, Dini-Andreote F, Zhou S G, Jiang Y J. 2025. Targeted manipulation of food webs in the plant rhizosphere. Trends in Plant Science, 30, 457–460.
Luan L, Jiang Y J, Cheng M H, Dini-Andreote F, Sui Y Y, Xu Q S, Geisen S, Sun B. 2020. Organism body size structures the soil microbial and nematode community assembly at a continental and global scale. Nature Communications, 11, 6406.
Malik A A, Martiny J B H, Brodie E L, Martiny A C, Treseder K K, Allison S D. 2020. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. The ISME Journal, 14, 1–9.
Martin T, Sprunger C D. 2023. Nematodes require space: The relationship between nematode community assemblage and soil carbon across varying aggregate fractions. Geoderma, 436, 116536.
Mathisen P, Thelaus J, de Luna S S, Andersson A. 2016. Rapid adaptation of predation resistance in bacteria isolated from a seawater microcosm. Aquatic Microbial Ecology, 78, 81–92.
Mendes I C, Bandick A K, Dick R P, Bottomley P J. 1999. Microbial biomass and activities in soil aggregates affected by winter cover crops. Soil Science Society of America Journal, 63, 873–881.
Ning D L, Deng Y, Tiedje J M, Zhou J Z. 2019. A general framework for quantitatively assessing ecological stochasticity. Proceedings of the National Academy of Sciences of the United States of America, 116, 16892-16898.
Pan Y S, Wu Y C, Li X Z, Zeng J, Lin X G. 1999. Continuing impacts of selective inhibition on bacterial and fungal communities in an agricultural soil. Microbial Ecology, 78, 927–935.
Rillig M C, Muller L A H, Lehmann A. 2017. Soil aggregates as massively concurrent evolutionary incubators. The ISME Journal, 11, 1943–1948.
See C R, Keller A B, Hobbie S E, Kennedy P G, Weber P K, Pett-Ridge J. 2022. Hyphae move matter and microbes to mineral microsites: Integrating the hyphosphere into conceptual models of soil organic matter stabilization. Global Change Biology, 28, 2527–2540.
Shao P S, Lynch L, Xie H T, Bao X L, Liang C. 2021. Tradeoffs among microbial life history strategies influence the fate of microbial residues in subtropical forest soils. Soil Biology and Biochemistry, 153, 108112.
Stegen J C, Lin X J, Fredrickson J K, Chen X Y, Kennedy D W, Murray C J, Rockhold M L, Konopka A. 2013. Quantifying community assembly processes and identifying features that impose them. The ISME Journal, 7, 2069–2079.
Tamang M, Sikorski J, van Bommel M, Piecha M, Urich T, Ruess L, Huber K, Neumann-Schaal M, Pester M. 2024. Succession of bacteria and archaea within the soil micro-food web shifts soil respiration dynamics. Environmental Microbiology, 26, 1–14.
Thakur M P, Geisen S. 2019. Trophic regulations of the soil microbiome. Trends in Microbiology, 27, 771–780.
Trejos-Espeleta J C, Marin-Jaramillo J P, Schmidt S K, Sommers P, Bradley J A, Orsi W D. 2024. Principal role of fungi in soil carbon stabilization during early pedogenesis in the high Arctic. Proceedings of the National Academy of Sciences of the United States of America, 121, e2402689121.
Wang B R, An S S, Liang C, Liu Y, Kuzyakov Y. 2021. Microbial necromass as the source of soil organic carbon in global ecosystems. Soil Biology and Biochemistry, 162, 108422.
Wang X Y, Liang C, Dini-Andreote F, Zhou S G, Jiang Y J. 2024. Impacts of trophic interactions on carbon accrual in soils. Trends in Microbiology, 33, 277–284.
Wright S F, Upadhyaya A, Buyer J S. 1998. Comparison of N-linked oligosaccharides of glomalin from arbuscular mycorrhizal fungi and soils by capillary electrophoresis. Soil Biology and Biochemistry, 30, 1853–1857.
Xun W B, Li W, Xiong W, Ren Y, Liu Y P, Miao Y Z, Xu Z H, Zhang N, Shen Q R, Zhang R F. 2019. Diversity-triggered deterministic bacterial assembly constrains community functions. Nature Communications, 10, 3833.
Yao Z Y, Hu H L, Li Y L, Sun X M, Adl S, Wang X G, Zhang Y J, Zhu B. 2024. Soil micro-food webs at aggregate scale are associated with soil nitrogen supply and crop yield. Geoderma, 442, 116801.
Yolima C, Stuart E K, Powell J R. 2025. Necromass of diverse root-associated fungi suppresses decomposition of native soil carbon via impacts of their traits. Ecology Letters, 28, e70216.
Yudina A, Kuzyakov Y. 2023. Dual nature of soil structure: The unity of aggregates and pores. Geoderma, 434, 116478.
Zhang S X, Kuzyakov Y, Jia Z J, Bai E, Morrien E, Liang A Z. 2025. Cascading effects within soil food web amplify fungal biomass and necromass production. Global Change Biology, 31, 1–16.
Zhang X D, Amelung W. 1996. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biology and Biochemistry, 28, 1201–1206.
Zhao Y, Biswas A, Liu M T, Han X Z, Lu X C, Chen X, Hao X X, Zou W X. 2025. Land use effects on soil carbon retention through glomalin-mediated aggregation. Geoderma, 456, 117252.
Zhong Y Q W, Zhang B P, Zhu Y J, Shangguan Z P, Li T T, Deng L, Chen J, Yan W M. 2025. Shifts in the fungal community promote soil carbon accumulation in microaggregates during long-term secondary succession. Functional Ecology, 1, 1–15.
Zhu L Y, Luan L, Chen Y, Wang X Y, Zhou S Z, Zou W X, Han X R, Duan Y H, Zhu B, Li Y, Liu W Z, Zhou J Z, Zhang J B, Jiang Y J, Sun B. 2024. Community assembly of organisms regulates soil microbial functional potential through dual mechanisms. Global Change Biology, 30, e17160.
|