Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Macroaggregates magnify the positive feedback of trophic cascades on carbon accrual

Lele Jin1, 2, 3*, Xiaoyue Wang1*, Yu Luo4, Jie Zheng1, Francisco Dini-Andreote5, Chao Liang6, Yuji Jiang2#

1 State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China

2 College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China

3 University of Chinese Academy of Sciences, Beijing 100049, China

4 Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China

5 Department of Plant Science & Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA

6 Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China

 Highlights 

l Fungivorous nematodes enhanced fungal-derived carbon accrual via trophic cascade.

l Macroaggregates magnified trophic cascade effects on soil fungal carbon accrual.

l Manure amendments strengthened nematode-fungus interactions and SOC accrual.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

线虫与真菌之间的相互作用对土壤碳循环具有重要意义。然而,它们对于土壤有机碳(SOC)累积的级联效应尚不明确,特别是土壤团聚体和有机肥添加在调节营养级联中的作用。基于一项为期19年的施肥试验,我们探究了线虫捕食如何影响真菌残体碳(FNC)和球囊霉素相关土壤蛋白(GRSPs),并在不同有机肥添加处理下,量化了它们对不同团聚体组分中SOC的贡献。研究发现,线虫捕食显著提高了真菌生物量,并促进了真菌群落的确定性组装。这些效应强烈依赖于团聚体组分,其中在大团聚体(LA)组分中观察到最显著的影响。一项微宇宙实验证实,线虫捕食使真菌生物量增加了6%以上,尤其是在LA组分中。有机肥的添加进一步刺激了真菌生长,强化了群落的确定性组装过程,从而增强了营养级联驱动下的FNCGRSPs积累。在这两种真菌来源的碳组分中,FNCSOC的贡献(40%)显著高于GRSPs17%),且LA组分中的贡献最大。路径分析进一步揭示,线虫诱导的真菌群落变化介导了有机肥添加对真菌源碳积累的正向效应。总体而言,这些发现强调了线虫在驱动正向营养级联效应对SOC积累中的关键作用。本研究为理解团聚体尺度的碳动态以及生物介导的土壤碳管理策略提供了新的见解。



Abstract  

The interactions between nematodes and fungi are important for soil carbon cycling. However, their cascading effects on soil organic carbon (SOC) accrual remain unclear, particularly the role of soil aggregates and manure amendments in mediating this trophic cascade. Using a 19-year fertilization experiment, we examined how nematode predation influences fungal necromass carbon (FNC) and glomalin-related soil proteins (GRSPs), and quantified their contributions to SOC across soil aggregates under different manure amendments. Our findings showed that nematode predation significantly enhanced fungal biomass and promoted deterministic assembly of fungal communities. These effects were strongly dependent on aggregate size, with the most pronounced responses observed in the large macroaggregate (LA) fraction. A complementary microcosm experiment confirmed that nematode predation increased fungal biomass by over 6%, particularly in the LA fraction. Manure amendments further stimulated fungal growth and reinforced deterministic community assembly, thereby enhancing trophic cascade-driven accrual of FNC and GRSPs. Of the two fungal-derived carbon sources, FNC contributed more substantially to SOC (40%) than GRSPs (17%), with the greatest contribution found in the LA fraction. Path analysis further revealed that nematode-induced changes in fungal communities mediated the positive effects of manure amendments on fungal-derived carbon accrual. Overall, these findings underscore the pivotal role of nematodes in driving positive trophic cascade impact on SOC accrual. Our study offers new insights into aggregate-scale carbon dynamics and biologically mediated strategies for soil carbon management.

Keywords:  fungal communities       fungivorous nematodes              biomass              assembly process              fungal-derived products              SOC accrual  
Online: 07 January 2026  
Fund: 

This study was supported by the National Science Fund for Distinguished Young Scholars (42425704), National Key Research and Development Program (2023YFD1900300-3), National Natural Science Foundation of China (42177298, 42307396), Double Thousand Plan of Jiangxi Province (jxsq2023201046), Jiangsu Agriculture Science and Technology Innovation Fund (CX(24)3117), and Frontier Project from the Institute of Soil Science, Chinese Academy of Sciences (ISSAS2401).

About author:  Lele Jin, Mobile: +86-18214738192, E-mail: jinlele@issas.ac.cn; Xiaoyue Wang, Mobile: +86-13182861251, E-mail: wangxy@issas.ac.cn; #Correspondence Yuji Jiang, E-mail: yjjiang@fafu.edu.cn

Cite this article: 

Lele Jin, Xiaoyue Wang, Yu Luo, Jie Zheng, Francisco Dini-Andreote, Chao Liang, Yuji Jiang. 2026. Macroaggregates magnify the positive feedback of trophic cascades on carbon accrual. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2026.01.005

Appuhn A, Joergensen R G. 2006. Microbial colonisation of roots as a function of plant species. Soil Biology and Biochemistry, 38, 1040–1051.

Barker K R. 1985. Nematode extraction and bioassays. In: Barker K R, ed., An Advanced Treatise on Meloidogyne Methodology. vol 2. North Carolina State University Graphics, Raleigh. pp. 19–35.

Bolyen E, Rideout J R, Dillon M R, Bokulich N A, Abnet C C, Al-Ghalith G A, Alexander H, Alm E J, Arumugam M, Asnicar F, Bai Y, Bisanz J E, Bittinger K, Brejnrod A, Brislawn C J, Brown C T, Callahan B J, Caraballo-Rodríguez A M, Chase J, Cope E K et al. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37, 852–857.

Camenzind T, Mason-Jones K, Mansour I, Rillig M C, Lehmann J. 2023. Formation of necromass-derived soil organic carbon determined by microbial death pathways. Nature Geoscience, 16, 115–122.

Crowther T W, Boddy L, Hefin Jones T. 2012. Functional and ecological consequences of saprotrophic fungus-grazer interactions. The ISME Journal, 6, 1992–2001.

Dini-Andreote F, Stegen J C, Van Elsas J D, Salles J F. 2015. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proceedings of the National Academy of Sciences of the United States of America, 112, E1326–E1332.

Erktan A, Or D, Scheu S. 2020. The physical structure of soil: Determinant and consequence of trophic interactions. Soil Biology and Biochemistry, 148, 107876.

Fu S, Ferris H, Brown D, Plant R. 2005. Does the positive feedback effect of nematodes on the biomass and activity of their bacteria prey vary with nematode species and population size? Soil Biology and Biochemistry, 37, 1979–1987.

Gardes M, Bruns T D. 1993. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113–118.

Gong X, Qiao Z H, Yao H F, Zhao D, Eisenhauer N, Scheu S, Liang C, Liu M Q, Zhu Y G, Sun X. 2024. Urbanization simplifies soil nematode communities and coincides with decreased ecosystem stability. Soil Biology and Biochemistry, 190, 109297.

Henseler J, Ringle C M, Sinkovics R R. 2009. The use of partial least squares path modeling in international marketing. Advances in International Marketing, 20, 277-319.

Holátko J, Brtnický M, Kučerík J, Kotianová M, Elbl J, Kintl A, Kynický J, Benada O, Datta R, Jansa J. 2021. Glomalin-Truths, myths, and the future of this elusive soil glycoprotein. Soil Biology and Biochemistry, 153, 108116.

Huang X, Wang J J, Dumack K, Liu W P, Zhang Q C, He Y, Di H J, Bonkowski M, Xu J M, Li Y. 2021. Protists modulate fungal community assembly in paddy soils across climatic zones at the continental scale. Soil Biology and Biochemistry, 160, 108358.

Hubbell S P. 2005. Neutral theory in community ecology and the hypothesis of functional equivalence. Functional Ecology, 19, 166–172.

Irving T B, Alptekin B, Kleven B, Ané J M. 2021. A critical review of 25 years of glomalin research: A better mechanical understanding and robust quantification techniques are required. New Phytologist, 232, 1572–1581.

Jiang Y, Li S Z, Barnes A D, Liu J, Zhu G, Luan L, Dini-Andreote F, Geisen S, Sun B. 2023. Unraveling the importance of top-down predation on bacterial diversity at the soil aggregate level. Geoderma, 439, 116658.

Jiang Y, Liu M Q, Zhang J B, Chen Y, Chen X Y, Chen L J, Li H X, Zhang X X, Sun B. 2017. Nematode grazing promotes bacterial community dynamics in soil at the aggregate level. The ISME Journal, 11, 2705–2717.

Jiang Y, Luan L, Hu K J, Liu M Q, Chen Z Y, Geisen S, Chen X Y, Li H X, Xu Q S, Bonkowski M, Sun B. 2020. Trophic interactions as determinants of the arbuscular mycorrhizal fungal community with cascading plant-promoting consequences. Microbiome, 8, 1–14.

Jiang Y, Sun B, Jin C, Wang F. 2013. Soil aggregate stratification of nematodes and microbial communities affects the metabolic quotient in an acid soil. Soil Biology and Biochemistry, 60, 1–9.

Kennedy P G, Maillard F. 2023. Knowns and unknowns of the soil fungal necrobiome. Trends in Microbiology, 31, 173–180.

Kou X C, Morriën E, Tian Y J, Zhang X K, Lu C Y, Xie H T, Liang W J, Li Q, Liang C. 2023. Exogenous carbon turnover within the soil food web strengthens soil carbon sequestration through microbial necromass accumulation. Global Change Biology, 29, 4069–4080.

Li H, Yang S, Semenov M V, Yao F, Ye J, Bu R C, Ma R A, Lin J J, Kurganova I, Wang X G, Deng Y, Kravchenko I, Jiang Y, Kuzyakov Y. 2021. Temperature sensitivity of SOM decomposition is linked with a K-selected microbial community. Global Change Biology, 27, 2763–2779.

Liang C, Amelung W, Lehmann J, Kästner M. 2019. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology, 25, 3578-3590.

Liang C, Schimel J P, Jastrow J D. 2017. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2, 17105.

Liao H, Hao X L, Zhang Y C, Qin F, Xu M, Cai P, Chen W L, Huang Q Y. 2022. Soil aggregate modulates microbial ecological adaptations and community assemblies in agricultural soils. Soil Biology and Biochemistry, 172, 108769.

Ling J, Dungait J A J, Delgado-Baquerizo M, Cui Z L, Zhou R R, Zhang W S, Gao Q, Chen Y X, Yue S C, Kuzyakov Y, Zhang F S, Chen X P, Tian J. 2025. Soil organic carbon thresholds control fertilizer effects on carbon accrual in croplands worldwide. Nature Communications, 16, 1234.

Luan L, Dini-Andreote F, Zhou S G, Jiang Y J. 2025. Targeted manipulation of food webs in the plant rhizosphere. Trends in Plant Science, 30, 457–460.

Luan L, Jiang Y J, Cheng M H, Dini-Andreote F, Sui Y Y, Xu Q S, Geisen S, Sun B. 2020. Organism body size structures the soil microbial and nematode community assembly at a continental and global scale. Nature Communications, 11, 6406.

Malik A A, Martiny J B H, Brodie E L, Martiny A C, Treseder K K, Allison S D. 2020. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. The ISME Journal, 14, 1–9.

Martin T, Sprunger C D. 2023. Nematodes require space: The relationship between nematode community assemblage and soil carbon across varying aggregate fractions. Geoderma, 436, 116536.

Mathisen P, Thelaus J, de Luna S S, Andersson A. 2016. Rapid adaptation of predation resistance in bacteria isolated from a seawater microcosm. Aquatic Microbial Ecology, 78, 81–92.

Mendes I C, Bandick A K, Dick R P, Bottomley P J. 1999. Microbial biomass and activities in soil aggregates affected by winter cover crops. Soil Science Society of America Journal, 63, 873–881.

Ning D L, Deng Y, Tiedje J M, Zhou J Z. 2019. A general framework for quantitatively assessing ecological stochasticity. Proceedings of the National Academy of Sciences of the United States of America, 116, 16892-16898.

Pan Y S, Wu Y C, Li X Z, Zeng J, Lin X G. 1999. Continuing impacts of selective inhibition on bacterial and fungal communities in an agricultural soil. Microbial Ecology, 78, 927–935.

Rillig M C, Muller L A H, Lehmann A. 2017. Soil aggregates as massively concurrent evolutionary incubators. The ISME Journal, 11, 1943–1948.

See C R, Keller A B, Hobbie S E, Kennedy P G, Weber P K, Pett-Ridge J. 2022. Hyphae move matter and microbes to mineral microsites: Integrating the hyphosphere into conceptual models of soil organic matter stabilization. Global Change Biology, 28, 2527–2540.

Shao P S, Lynch L, Xie H T, Bao X L, Liang C. 2021. Tradeoffs among microbial life history strategies influence the fate of microbial residues in subtropical forest soils. Soil Biology and Biochemistry, 153, 108112.

Stegen J C, Lin X J, Fredrickson J K, Chen X Y, Kennedy D W, Murray C J, Rockhold M L, Konopka A. 2013. Quantifying community assembly processes and identifying features that impose them. The ISME Journal, 7, 2069–2079.

Tamang M, Sikorski J, van Bommel M, Piecha M, Urich T, Ruess L, Huber K, Neumann-Schaal M, Pester M. 2024. Succession of bacteria and archaea within the soil micro-food web shifts soil respiration dynamics. Environmental Microbiology, 26, 1–14.

Thakur M P, Geisen S. 2019. Trophic regulations of the soil microbiome. Trends in Microbiology, 27, 771–780.

Trejos-Espeleta J C, Marin-Jaramillo J P, Schmidt S K, Sommers P, Bradley J A, Orsi W D. 2024. Principal role of fungi in soil carbon stabilization during early pedogenesis in the high Arctic. Proceedings of the National Academy of Sciences of the United States of America, 121, e2402689121.

Wang B R, An S S, Liang C, Liu Y, Kuzyakov Y. 2021. Microbial necromass as the source of soil organic carbon in global ecosystems. Soil Biology and Biochemistry, 162, 108422.

Wang X Y, Liang C, Dini-Andreote F, Zhou S G, Jiang Y J. 2024. Impacts of trophic interactions on carbon accrual in soils. Trends in Microbiology, 33, 277–284.

Wright S F, Upadhyaya A, Buyer J S. 1998. Comparison of N-linked oligosaccharides of glomalin from arbuscular mycorrhizal fungi and soils by capillary electrophoresis. Soil Biology and Biochemistry, 30, 1853–1857.

Xun W B, Li W, Xiong W, Ren Y, Liu Y P, Miao Y Z, Xu Z H, Zhang N, Shen Q R, Zhang R F. 2019. Diversity-triggered deterministic bacterial assembly constrains community functions. Nature Communications, 10, 3833.

Yao Z Y, Hu H L, Li Y L, Sun X M, Adl S, Wang X G, Zhang Y J, Zhu B. 2024. Soil micro-food webs at aggregate scale are associated with soil nitrogen supply and crop yield. Geoderma, 442, 116801.

Yolima C, Stuart E K, Powell J R. 2025. Necromass of diverse root-associated fungi suppresses decomposition of native soil carbon via impacts of their traits. Ecology Letters, 28, e70216.

Yudina A, Kuzyakov Y. 2023. Dual nature of soil structure: The unity of aggregates and pores. Geoderma, 434, 116478.

Zhang S X, Kuzyakov Y, Jia Z J, Bai E, Morrien E, Liang A Z. 2025. Cascading effects within soil food web amplify fungal biomass and necromass production. Global Change Biology, 31, 1–16.

Zhang X D, Amelung W. 1996. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biology and Biochemistry, 28, 1201–1206.

Zhao Y, Biswas A, Liu M T, Han X Z, Lu X C, Chen X, Hao X X, Zou W X. 2025. Land use effects on soil carbon retention through glomalin-mediated aggregation. Geoderma, 456, 117252.

Zhong Y Q W, Zhang B P, Zhu Y J, Shangguan Z P, Li T T, Deng L, Chen J, Yan W M. 2025. Shifts in the fungal community promote soil carbon accumulation in microaggregates during long-term secondary succession. Functional Ecology, 1, 1–15.

Zhu L Y, Luan L, Chen Y, Wang X Y, Zhou S Z, Zou W X, Han X R, Duan Y H, Zhu B, Li Y, Liu W Z, Zhou J Z, Zhang J B, Jiang Y J, Sun B. 2024. Community assembly of organisms regulates soil microbial functional potential through dual mechanisms. Global Change Biology, 30, e17160.

No related articles found!
No Suggested Reading articles found!