Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Oilseed Brassica under threat: viral pathogens and the compounding effects of climate change

Archita Sahu1, 2, Rohit Bharati1, Piotr Trebicki3, Jiban Kumar Kundu#

1 Plant Virus and Vector Interactions, Czech Agrifood Research Center, Prague 161 06, Czech Republic

2 Department of Crop Sciences and Agroforestry, The Faculty of Tropical Agri-Sciences, Czech University of Life Sciences Prague, Prague 16500, Czech Republic

3Applied BioSciences, Macquarie University, Sydney 2109, Australia. 

 Highlights 

· Climate change intensifies virus pressure in Brassica oilseed crops.
· TuYV and TuMV cause severe yield losses in Brassica napus.
· Elevated CO₂ alters aphid behaviour, increasing virus transmission.
· Resistance genes show reduced effectiveness under heat stress.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  

Oilseed crops of the genus Brassica rank third globally in vegetable oil production and contribute substantially to global oil supplies for both food and industrial purposes, including lubricants, biofuels, and cosmetics. Despite advances in high-yielding cultivars and modern agronomic practices, the productivity of oilseed Brassica species remains significantly constrained by a range of pathogens, particularly viral agents such as turnip yellows virus (TuYV), turnip mosaic virus (TuMV), and cauliflower mosaic virus (CaMV). Climate change further exacerbates these challenges by influencing plant physiology, virus biology and vector ecology. Rising temperatures enhance virus-vector interactions and increase the risk of disease outbreaks, while elevated atmospheric CO₂ concentrations can alter plant nutritional profiles, potentially stimulating vector feeding behaviour and promoting virus transmission. Although natural sources of resistance offer partial protection, their effectiveness may be compromised under abiotic stress conditions such as heat stress, highlighting vulnerabilities in plant defence. This mini-review addresses three major challenges to Brassica oilseed production: the impact of principal viral pathogens, climate-driven shifts in host-virus-vector dynamics, and the environmental robustness of genetic resistance. The review also outlines knowledge gaps and research priorities for developing climate-resilient Brassica oilseed genotypes.

Keywords:  Brassica oilseeds       plant viruses              climate change              host-virus-vector interaction              virus resistance breeding  
Online: 07 January 2026  
Fund: 

The work was supported by Institutional project DKRVO 2023-2027 (Mze RO0425) from the Ministry of Agriculture, the Czech Republic. Rohit Bharati was funded through a Young Scientist Award – an internal grant provided under MZe RO0425.

About author:  #Correspondence Jiban Kumar Kundu, E-mail: jiban.kumar@carc.cz

Cite this article: 

Archita Sahu, Rohit Bharati, Piotr Trebicki, Jiban Kumar Kundu. 2026. Oilseed Brassica under threat: viral pathogens and the compounding effects of climate change. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2026.01.004

Adhab M, Angel C, Leisner S, Schoelz J E. 2018. The P1 gene of Cauliflower mosaic virus is responsible for breaking resistance in Arabidopsis thaliana ecotype Enkheim (En-2). Virology, 523, 15–21.

Ainsworth E A, Long S P. 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. The New Phytologist, 165, 351–371.

Ainsworth E A. 2008. Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Global Change Biology, 14, 1642–1650

Alazem M, Lin N S. 2017. Antiviral Roles of Abscisic Acid in Plants. Frontiers in Plant Science, 8, 1760.

Alfaro-Fernández A, Serrano A, Tornos T, del Carmen Cebrián M, del Carmen Córdoba-Sellés M, Jordá C, Font M I. 2016. Turnip yellow mosaic virus in Chinese cabbage in Spain: commercial seed transmission and molecular characterisation. European Journal of Plant Pathology, 146, 433–442.

Amari K, Di Donato M, Dolja V V, Heinlein M, 2014. Myosins VIII and XI play distinct roles in reproduction and transport of tobacco mosaic virus. PLoS Pathogens, 10, e1004448.

Amari K, Huang C, Heinlein, M. 2021. Potential impact of global warming on virus propagation in infected plants and agricultural productivity. Frontiers in Plant Science, 12,

Bak A, Emerson J B. 2020. Cauliflower mosaic virus (CaMV) biology, management, and relevance to GM plant detection for sustainable organic agriculture. Frontiers in Sustainable Food Systems, 4,21.

Bale J S, Hayward S A. 2010. Insect overwintering in a changing climate. The Journal of Experimental Biology, 213, 980–994.

Bañuelos G S, Dhillon K S, Banga S S, 2013. Oilseed brassicas., in: Biofuel Crops: Production, Physiology and Genetics, CABI Books. pp. 339–368.

Bergès S E, Vile D, Vazquez-Rovere C, Blanc S, Yvon M, Bédiée A, Rolland G, Dauzat M, van Munster M. 2018. Interactions between drought and plant genotype change epidemiological traits of cauliflower mosaic virus. Frontiers in Plant Science, 9, 703.

Boland G J, Melzer M S, Hopkin A, Higgins V, Nassuth A. 2004. Climate change and plant diseases in Ontario. Canadian Journal of Plant Pathology, 26, 335–350.

Callaway A, Liu W, Andrianov V, Stenzler L, Zhao J, Wettlaufer S, Jayakumar P, Howell S H. 1996. Characterization of cauliflower mosaic virus (CaMV) resistance in virus-resistant ecotypes of Arabidopsis. Molecular Plant-Microbe Interactions, 9, 810–818.

Canto T, Palukaitis P. 2002. Novel N Gene-Associated, Temperature-Independent Resistance to the Movement of Tobacco Mosaic Virus Vectors Neutralized by a Cucumber Mosaic Virus RNA1 Transgene. Journal of Virology, 76, 12908–12916.

Chauhan J S, Tyagi M K, Kumar A, Nashaat N I, Singh M, Singh N B, Jakhar M L, Welham S J. 2007. Drought effects on yield and its components in Indian mustard (Brassica juncea L.). Plant Breeding, 126, 399–402.

Chung H, Jeong Y M, Mun J H, Lee S S, Chung W H, Yu H J. 2014. Construction of a genetic map based on high-throughput SNP genotyping and genetic mapping of a TuMV resistance locus in Brassica rapa. Molecular Genetics and Genomics, 289, 149–160.

Climate change: atmospheric carbon dioxide | NOAA Climate.gov [WWW Document]. 2025. URL https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide. accessed 26.7.25.

Congdon B S, Baulch J R, Coutts B A. 2020. Impact of turnip yellows virus infection on seed yield of an open-pollinated and hybrid canola cultivar when inoculated at different growth stages. Virus Research, 277, 197847.

Congdon B S, Baulch J R, Coutts B A. 2021. Novel sources of turnip yellows virus resistance in Brassica and impacts of temperature on their durability. Plant Disease, 105, 2484–2493.

Coutts B, Hawkes J, Jones R. 2006. Occurrence of beet western yellows virus and its aphid vectors in over-summering broad-leafed weeds and volunteer crop plants in the grainbelt region of south-western Australia. Australian Journal of Agricultural Research, 57, 975-982

Coutts B, Jones R. 2000. Viruses infecting canola (Bassica napus) in south-west Australia: Incidence, distribution, spread, and infection reservoir in wild radish (Raphanus raphinistrum). Crop and Pasture Science, 51, 925–936.

Das Laha S, Kundu A, Podder S. 2024. Impact of biotic stresses on the Brassicaceae family and opportunities for crop improvement by exploiting genotyping traits. Planta, 259, 97.

de Assis Filho F M, Sherwood J L. 2000. Evaluation of seed transmission of turnip yellow mosaic virus and tobacco mosaic virus in Arabidopsis thaliana. Phytopathology, 90, 1233–1238.

Desprez-Loustau M L, Robin C, Reynaud G, Déqué M, Badeau V, Piou D, Husson C, Marçais B. 2007. Simulating the effects of a climate-change scenario on the geographical range and activity of forest-pathogenic fungi. Canadian Journal of Plant Pathology. 29, 101–120.

Drake B G, Gonzalez-Meler M A, Long S P. 1997. More efficient plants: a consequence of rising atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology, 48, 609–639.

Dreyer F, Graichen K, Jung C. 2001. A major quantitative trait locus for resistance to Turnip Yellows Virus (TuYV, syn. beet western yellows virus, BWYV) in rapeseed. Plant Breeding, 120, 457–462.

Farzadfar S, Pourrahim R, Golnaraghi A R, Ahoonmanesh A. 2005. Occurrence of cauliflower mosaic virus in different cruciferous plants in Iran. Plant Pathology, 54, 810.

Farzadfar S, Tomitaka Y, Ikematsu M, Golnaraghi A R, Pourrahim R, Ohshima K. 2009. Molecular characterisation of turnip mosaic virus isolates from Brassicaceae weeds. European Journal of Plant Pathology, 124, 45–55.

Filardo F, Nancarrow N, Kehoe M, McTaggart A R, Congdon B, Kumari S, Aftab M, Trębicki P, Rodoni B, Thomas J, Sharman M. 2021. Genetic diversity and recombination between turnip yellows virus strains in Australia. Archives of Virology, 166, 813–829.

Fitzgerald G J, Tausz M, Armstrong R, Panozzo J, Trębicki P, Mollah M, Tausz-Posch S, Walker C, Nuttall J G, Bourgault M, Löw M, Partington D, Butterly C R, Lam S K, Norton R M, O’Leary G J. 2022. Elevated CO2 in semi-arid cropping systems: A synthesis of research from the Australian Grains Free Air CO2 Enrichment (AGFACE) research program, in: Sparks D L (Ed.), Advances in Agronomy, Academic Press, 171, pp. 1–73.

Fuchs M. 2017. Pyramiding resistance-conferring gene sequences in crops. Current Opinion in. Virology, 26, 36–42.

Fujiwara A, Inukai T, Kim B M, Masuta C. 2011. Combinations of a host resistance gene and the CI gene of turnip mosaic virus differentially regulate symptom expression in Brassica rapa cultivars. Archives of Virology, 156, 1575–1581.

Garrett K A, Dendy S P, Frank E E, Rouse M N, Travers S E. 2006. Climate change effects on plant disease: genomes to ecosystems. Annual Review of Phytopathology, 44, 489–509.

González R, Butković A, Escaray F J, Martínez-Latorre J, Melero Í, Pérez-Parets E, Gómez-Cadenas A, Carrasco P, Elena S F. 2021. Plant virus evolution under strong drought conditions results in a transition from parasitism to mutualism. Proceedings of the National Academy of Sciences of the United States of America, 118, e2020990118.

Graichen K. 1994. Nachweis von resistenz gegenüber dem turnip yellows luteovirus (TuYV) in winterraps und verwandten arten. Vorträge Für Pflanzenzüchtung, 30,132–43. (in German)

Greer S F, Hackenberg D, Gegas V, Mitrousia G, Edwards D, Batley J, Teakle G R, Barker G C, Walsh J A. 2021. Quantitative trait locus mapping of resistance to turnip yellows virus in Brassica rapa and Brassica oleracea and introgression of these resistances by resynthesis into allotetraploid plants for deployment in Brassica napus. Frontiers in Plant Science, 12, 781385.

Greer S F, Surendran A, Grant M, Lillywhite R. 2023. The current status, challenges, and future perspectives for managing diseases of Brassicas. Frontiers in Microbiology, 14, 1209258.

Guo Huijuan, Huang L, Sun Y, Guo Honggang, Ge F. 2016. The Contrasting Effects of Elevated CO2 on TYLCV Infection of Tomato Genotypes with and without the Resistance Gene, Mi-1.2. Frontiers in Plant Science, 7, 1680

Haas M, Bureau M, Geldreich A, Yot P, Keller M. 2002. Cauliflower mosaic virus: still in the news. Molecular Plant Pathology, 3, 419–429.

Hackenberg D, Asare-Bediako E, Baker A, Walley P, Jenner C, Greer S, Bramham L, Batley J, Edwards D, Delourme R, Barker G, Teakle G, Walsh J. 2020. Identification and QTL mapping of resistance to turnip yellows virus (TuYV) in oilseed rape, Brassica napus. Theoretical and Applied Genetics, 133, 383–393.

Halder K, Chaudhuri A, Abdin M Z, Majee M, Datta A. 2022. RNA Interference for Improving Disease Resistance in Plants and Its Relevance in This Clustered Regularly Interspaced Short Palindromic Repeats-Dominated Era in Terms of dsRNA-Based Biopesticides. Frontiers in Plant Science, 13, 885128.

Hance T, van Baaren J, Vernon P, Boivin G. 2007. Impact of extreme temperatures on parasitoids in a climate change perspective. Annual Review of Entomology, 52, 107–126.

Hao K, Gao X, Yang M, Wang Z, An M, Liu H, Xia Z, Wu Y. 2024. A nanomaterial for the delivery of dsRNA as a strategy to alleviate viral infections in maize. Chemical Engineering Journal, 488, 150923.

Hofmann C, Niehl A, Sambade A, Steinmetz A, Heinlein M. 2009. Inhibition of tobacco mosaic virus movement by expression of an actin-binding protein. Plant Physiology, 149, 1810–1823.

Honjo M N, Emura N, Kawagoe T, Sugisaka J, Kamitani M, Nagano A J, Kudoh H. 2020. Seasonality of interactions between a plant virus and its host during persistent infection in a natural environment. The ISME Journal, 14, 506–518.

Huang S, Wang C, Ding Z, Zhao Y, Dai J, Li J, Huang H, Wang T, Zhu M, Feng M, Ji Y, Zhang Z, Tao X. 2024. A plant NLR receptor employs ABA central regulator PP2C-SnRK2 to activate antiviral immunity. Nature Communication, 15, 3205.

Huber L, Gillespie T J. 1992. Modeling leaf wetness in relation to plant disease epidemiology. Annual Review of Phytopathology, 30, 553–577.

Hughes L, Bazzaz F A. 2001. Effects of elevated CO2 on five plant-aphid interactions. Entomologia Experimentalis et Applicata, 99, 87–96.

Hughes S L, Hunter P J, Sharpe A G, Kearsey M J, Lydiate D J, Walsh J A. 2003. Genetic mapping of the novel turnip mosaic virus resistance gene TuRB03 in Brassica napus. Theoretical and Applied Genetics, 107, 1169–1173.

Hultgren A, Carleton T, Delgado M, Gergel D R, Greenstone M, Houser T, Hsiang S, Jina A, Kopp R E, Malevich S B, McCusker K E, Mayer T, Nath I, Rising J, Rode A, Yuan, J. 2025. Impacts of climate change on global agriculture accounting for adaptation. Nature, 642, 644–652.

Hunter P J, Jones J E, Walsh J A. 2002. Involvement of beet western yellows virus, cauliflower mosaic virus, and turnip mosaic virus in internal disorders of stored white cabbage. Phytopathology, 92, 816–826.

Jafar A, Bibi N, Naqvi R A, Sadeghi-Niaraki A, Jeong D. 2024. Revolutionizing agriculture with artificial intelligence: plant disease detection methods, applications, and their limitations. Frontiers in Plant Science, 15, 1356260.

Jenner C E, Sánchez F, Nettleship S B, Foster G D, Ponz F, Walsh J A. 2000. The cylindrical inclusion gene of Turnip mosaic virus encodes a pathogenic determinant to the Brassica resistance gene TuRB01. Molecular Plant-Microbe Interactions. 13, 1102–1108.

Jenner C E, Tomimura K, Ohshima K, Hughes S L, Walsh J A. 2002. Mutations in turnip mosaic virus P3 and cylindrical inclusion proteins are separately required to overcome two Brassica napus resistance genes. Virology, 300, 50–59.

Jiang S, Dai Y, Lu Y, Fan S, Liu Y, Bodlah M A, Parajulee M N, Chen F. 2018. Molecular evidence for the fitness of cotton aphid, aphis gossypii in response to elevated co2 from the perspective of feeding behavior analysis. Frontiers in Physiology, 9, 1444.

Jin M, Lee S S, Ke L, Kim J S, Seo M S, Sohn S H, Park B S, Bonnema G. 2014. Identification and mapping of a novel dominant resistance gene, TuRB07 to turnip mosaic virus in Brassica rapa. Theoretical and Applied Genetics, 127, 509–519.

Jones R A C, Coutts B A, Hawkes J. 2007. Yield-limiting potential of beet western yellows virus in Brassica napus. Australian Journal of Agricultural Research, 58, 788–801.

Jones R A C, Sharman M, Trębicki P, Maina S, Congdon B S. 2021. Virus diseases of cereal and oilseed crops in Australia: current position and future challenges. Viruses, 13, 2051.

Juergens M, Paetsch C, Krämer I, Zahn M, Rabenstein F, Schondelmaier J, Schliephake E, Snowdon R, Friedt W, Ordon F. 2010. Genetic analyses of the host-pathogen system turnip yellows virus (TuYV)-rapeseed (Brassica napus L.) and development of molecular markers for TuYV-resistance. Theoretical and Applied Genetics, 120, 735–744.

Kawakubo S, Gao F, Li S, Tan Z, Huang Y K, Adkar-Purushothama C R, Gurikar C, Maneechoat P, Chiemsombat P, Aye S S, Furuya N, Shevchenko O, Špak J, Škorić D, Ho S Y W, Ohshima K.  2021. Genomic analysis of the brassica pathogen turnip mosaic potyvirus reveals its spread along the former trade routes of the Silk Road. Proceedings of the National Academy of Sciences of the United States of America, 118, e2021221118.

Kim J, Kang W H, Yang H B, Park S, Jang C S, Yu H J, Kang B C. 2013. Identification of a broad-spectrum recessive gene in Brassica rapa and molecular analysis of the eIF4E gene family to develop molecular markers. Molecular Breeding, 32, 385–398.

Kim J H, Castroverde C D M, Huang S, Li C, Hilleary R, Seroka A, Sohrabi R, Medina-Yerena D, Huot B, Wang J, Nomura K, Marr S K, Wildermuth M C, Chen T, MacMicking J D, He S Y. 2022. Increasing the resilience of plant immunity to a warming climate. Nature, 607, 339–344.

Kim J H, Hilleary, R., Seroka, A., He, S.Y., 2021. Crops of the future: building a climate-resilient plant immune system. Current Opinion in Plant Biology, 60, 101997.

Kirino N, Inoue K, Tanina K, Yamazaki Y, Ohki S T. 2008. Turnip yellow mosaic virus isolated from Chinese cabbage in Japan. Journal of General Plant Pathology, 74, 331–334.

Kocmánková E, Trnka M, Juroch J, Dubrovský M, Semerádová D, Možný M, Žalud Z. 2009. Impact of climate change on the occurrence and activity of harmful organisms. Plant Protection Science, 45, S48–S52.

Korkmaz S, Onder S, Tomitaka Y, Ohshima K. First report of turnip mosaic virus on Brassicaceae crops in Turkey. 2007. First report of Turnip mosaic virus on Brassicaceae crops in Turkey. Plant Pathology, 56, 719.

Köster P, DeFalco T A, Zipfel C. 2022. Ca2+ signals in plant immunity. The EMBO Journal. 41, e110741.

Krishnareddy M. 2013. Impact of climate change on insect vectors and vector-borne plant viruses and phytoplasma, in: Singh H C P, Rao N K S, Shivashankar K S (Eds.), Climate-Resilient Horticulture: Adaptation and Mitigation Strategies. Springer India, pp. 255–277.

Kumar R, Dasgupta I. 2024. Abscisic acid: An emerging player in plant-virus interactions. Plant Physiology and Biochemistry. 215, 109046.

Lago C, Fereres A, Moreno A, Trębicki P. 2024. Assessing the impact of turnip yellows virus infection and drought on canola performance: implications under a climate change scenario. Frontiers in Agronomy, 6, 1419002.

Lee Y R, Siddique M I, Kim D S, Lee E S, Han K, Kim, S G, Lee H E. 2023. CRISPR/Cas9-mediated gene editing to confer turnip mosaic virus (TuMV) resistance in Chinese cabbage ( Brassica rapa ). Horticulture Research, 10, uhad078.

Leibman D, Ortega‐Parra N, Wolf D, Shterkman M, Hanssen I, Gal‐On A. 2021. A transgenic RNAi approach for developing tomato plants immune to Pepino mosaic virus. Plant Pathology. 70, 1003–1012.

Li Q, Zhang X, Zeng Q, Zhang Z, Liu S, Pei Y, Wang S, Liu X, Xu W, Fu W, Zhao Z, Song X. 2015. Identification and mapping of a novel turnip mosaic virus resistance gene Tu01 in chinese cabbage (Brassica rapa L.). Plant Breeding, 134, 221–225.

Li S, Fang L, Hegelund J N, Liu F. 2021. Elevated CO2 modulates plant hydraulic conductance through regulation of PIPs under progressive soil drying in tomato plants. Frontiers in Plant Science, 12, 666066.

Li Z, Ahammed G J. 2023. Salicylic acid and jasmonic acid in elevated CO2-induced plant defense response to pathogens. Journal of Plant Physiology, 286, 154019.

Lim S, Yoo R H, Igori D, Zhao F, Kim K H, Moon J S. 2015. Genome sequence of a recombinant brassica yellows virus infecting chinese cabbage. Archives of Virology, 160, 597–600.

Lin M T, Campbell R N. 1972. Characterization of broccoli necrotic yellows virus. Virology, 48, 30–40.

Liu H, Soyars C L, Li J, Fei Q, He G, Peterson B A, Meyers B C, Nimchuk Z L, Wang X.  2018. CRISPR/Cas9-mediated resistance to cauliflower mosaic virus. Plant Direct, 2, e00047.

Loladze I. 2002. Rising atmospheric CO2 and human nutrition: toward globally imbalanced plant stoichiometry? Trends in Ecology & Evolution. 17, 457–461.

Lu X, Li Z, Huang W, Wang S, Zhang S, Li F, Zhang H, Sun R, Li G, Zhang S. 2022. Mapping and identification of a new potential dominant resistance gene to turnip mosaic virus in Brassica rapa. Planta, 256, 66.

Lu Y J, Li P, Shimono M, Corrion A, Higaki T, He S Y, Day B. 2020. Arabidopsis calcium-dependent protein kinase 3 regulates actin cytoskeleton organization and immunity. Nature Communication, 11, 6234.

Lydiate D J, Pilcher R L, Higgins E E, Walsh J A. 2014. Genetic control of immunity to Turnip mosaic virus (TuMV) pathotype 1 in Brassica rapa (Chinese cabbage). Genome, 57, 419–425.

Ma J, Hou X, Xiao D, Qi L, Wang F, Sun F, Wang Q. 2010. Cloning and characterization of the bctur3 gene related to resistance to turnip mosaic virus (TuMV) from non-heading Chinese cabbage. Plant Molecular Biology Reporter, 28, 588–596.

Macleod K, Greer S F, Bramham L E, Pimenta R J G, Nellist C F, Hackenburg D, Teakle G R, Barker G C, Walsh J A. 2023. A review of sources of resistance to turnip yellows virus (TuYV) in Brassica species. Annals of Applied Biology, 183, 200–208.

Masson-Delmotte V, Zhai P, Pirani A, Connors S L, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis M I, Huang M, Leitzell K, Lonnoy E, Matthews J B R, Maycock T K, Waterfield T, Yelekçi Ö, Yu R, Zhou B. (Eds.) 2021. Climate Change 2021: The Physical Science Basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York.

Mayo M A. 2002. ICTV at the Paris ICV: results of the plenary session and the binomial ballot. Archives of Virology, 147, 2254–2260.

Mhamdi A, Noctor G. 2016. High CO2 primes plant biotic stress defences through redox-linked pathways. Plant Physiology, 172, 929-942.

Nancarrow N, Aftab M, Hollaway G, Rodoni B, Trębicki P. 2022. Symptomless turnip yellows virus infection causes grain yield loss in lentil and field pea: A three-year field study in south-eastern Australia. Frontiers in Plant Science, 13, 1049905.

Nellist C F, Ohshima K, Ponz F, Walsh J A.  2022. Turnip mosaic virus, a virus for all seasons. Annals of Applied Biology, 180, 312–327.

Nellist C F, Qian W, Jenner C E, Moore J D, Zhang S, Wang X, Briggs W H, Barker G  C, Sun R, Walsh J A. 2014. Multiple copies of eukaryotic translation initiation factors in Brassica rapa facilitate redundancy, enabling diversification through variation in splicing and broad-spectrum virus resistance. The Plant Journal: for Cell and Molecular Biology, 77, 261–268.

Nyalugwe E P, Barbetti M J, Clode P L, Jones R A C. 2016. Programmed cell death pathways induced by early plant‐virus infection are determined by isolate virulence and stage of infection. Plant Pathology, 65, 1518–1528.

Nyalugwe E P, Barbetti M J, Jones R A C.  2015. Strain specificity of turnip mosaic virus resistance gene TuRBJU 01 in Brassica juncea. European Journal of Plant Pathology, 145.

Ohshima K, Yamaguchi Y, Hirota R, Hamamoto T, Tomimura K, Tan Z, Sano T, Azuhata F, Walsh J A, Fletcher J, Chen J, Gera A, Gibbs A. 2002. Molecular evolution of turnip mosaic virus: evidence of host adaptation, genetic recombination and geographical spread. Journal of General Virology, 83, 1511–1521.

Oilseeds: world markets and trade, 2025. United States Department of Agriculture Foreign Agricultural Service.  https://apps.fas.usda.gov/psdonline/circulars/oilseeds.pdf accessed on 13.05.2025.

Omae N, Suzuki M, Ugaki M. 2020. The genome of the cauliflower mosaic virus, a plant pararetrovirus, is highly methylated in the nucleus. FEBS Letters, 594, 1974–1988.

Pagán I, Fraile A, Fernandez-Fueyo E, Montes N, Alonso-Blanco C, García-Arenal F. 2010. Arabidopsis thaliana as a model for the study of plant–virus co-evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 1983–1995.

Pallett D W, Thurston M I, Cortina‐Borja M, Edwards M L, Alexander M, Mitchell E, Raybould A F, Cooper J I. 2002. The incidence of viruses in wild Brassica rapa ssp. sylvestris in Southern England. Annals of Applied Biology, 141, 163–170.

Palukaitis P, Kim S. 2021. Resistance to turnip mosaic virus in the family Brassicaceae. The Plant Pathology Journal, 37, 1–23.

Piazza G J, Fogila T A. 2001. Rapeseed oil for oleochemical usage. European Journal of Lipid Science and Technology, 103, 450–454.

Pouresmaeil M, Dall'Ara M, Salvato M, Turri V, Ratti C. 2023. Cauliflower mosaic virus: Virus-host interactions and its uses in biotechnology and medicine. Virology, 580, 112–119.

Puthanveed V, Singh K, Poimenopoulou E, Pettersson J, Siddique AB, Kvarnheden A. 2023. Milder autumns may increase risk for infection of crops with turnip yellows virus. Phytopathology, 113, 1788–1798.

Qian W, Zhang S, Zhang S, Li F, Zhang H, Wu J, Wang X, Walsh J A, Sun R.  2013. Mapping and candidate-gene screening of the novel turnip mosaic virus resistance gene retr02 in Chinese cabbage (Brassica rapa L.). Theoretical and Applied Genetics, 126, 179–188.

Quezada-Martinez D, Addo Nyarko C P, Schiessl S V, Mason A S. 2021. Using wild relatives and related species to build climate resilience in Brassica crops. Theory of Applied Genetics, 134, 1711–1728.

Roy S, Mathur P. 2021. Delineating the mechanisms of elevated CO2 mediated growth, stress tolerance and phytohormonal regulation in plants. Plant Cell Reports, 40, 1345–1365.

Ruelland E, Zachowski A. 2010. How plants sense temperature. Environmental and Experimental Botany, 69, 225–232.

Rupp J, Fellers J, Trick H. 2012. RNAi-mediated viral resistance in transgenic wheat: stability over five generations. In Vitro Cellular & Developmental Biology – Animal, 48, 66–67.

Rushholme R L. 2000. The genetic control of resistance to turnip mosaic virus (TuMV) in Brassica. Doctoral dissertation, University of East Anglia.

Rusholme R L, Higgins E E, Walsh J A, Lydiate D J. 2007. Genetic control of broad-spectrum resistance to turnip mosaic virus in Brassica rapa (Chinese cabbage). The Journal of General Virology, 88, 3177–86.

Samaradivakara S P, Chen H, Lu Y, Li P, Kim Y, Tsuda K, Mine A, Day B. 2022. Overexpression of NDR1 leads to pathogen resistance at elevated temperatures. New Phytologist, 235, 1146–1162.

Schliephake E, Graichen K, Rabenstein F. 2000. Investigations on the vector transmission of the beet mild yellowing virus (BMYV) and the turnip yellows virus (TuYV). Journal of Plant Disease and Protection, 107, 81-87

Schwinghamer M W, Schilg M A, Walsh J A, Bambach R W, Cossu R M, Bambridge J M, Hind-Lanoiselet T L, McCorkell B E, Cross P. 2014. Turnip mosaic virus: potential for crop losses in the grain belt of New South Wales, Australia. Australasian Plant Pathology, 43, 663–678.

Sconiers W B, Eubanks M D. 2017. Not all droughts are created equal? The effects of stress severity on insect herbivore abundance. Arthropod-Plant Interactions, 11, 45–60.

Sen M K, Mondal S K, Bharati R, Severova L, Šrédl K. 2025. Multiplex genome editing for climate-resilient woody plants. Frontiers in Forests and Global Change, 8, 1542459.

Shahraeen N, Farzadfar S, Lesemann D E. 2003. Incidence of viruses infecting winter oilseed rape (Brassica napus ssp. oleifera) in Iran. Journal of Phytopathology, 151, 614–616.

Shopan J, Mou H, Zhang L, Zhang C, Ma W, Walsh J A, Hu Z, Yang J, Zhang M. 2017. Eukaryotic translation initiation factor 2B-beta (eIF2Bβ), a new class of plant virus resistance gene. The Plant Journal: for Cell and Molecular Biology, 90, 929–940.

Slavíková L, Ibrahim E, Alquicer G, Tomašechová J, Šoltys K, Glasa M, Kundu J K. 2022. Weed hosts represent an important reservoir of turnip yellows virus and a possible source of virus introduction into oilseed rape crop. Viruses, 14, 2511.

Son S, Park S R. 2022. Climate change impedes plant immunity mechanisms. Frontiers in Plant Science. 13, 1032820.

Spence N J, Phiri N A, Hughes S L, Mwaniki A, Simons S, Oduor G, Chacha D, Kuria A, Ndirangu S, Kibata G N, Marris G C. 2007. Economic impact of turnip mosaic virus, cauliflower mosaic virus and beet mosaic virus in three Kenyan vegetables. Plant Pathology, 56, 317–323.

Stevens M, Freeman B, Liu H Y, Herrbach E, Lemaire O. 2005. Beet poleroviruses: close friends or distant relatives? Molecular Plant Pathology, 6, 1–9.

Stevens M, McGrann G R D, Clark B. 2008. An Emerging Threat to European Oilseed Rape Production? HGCA Research review, 69, 1 – 36.

Stiling P, Cornelissen T. 2007. How does elevated carbon dioxide (CO2) affect plant–herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Global Change Biology, 13, 1823–1842.

Szczepaniec A, Finke D. 2019. Plant-vector-pathogen interactions in the context of drought stress. Frontiers in Ecology and Evolution, 7, 262.

Tariq M, Wright D J, Rossiter J T, Staley J T. 2012. Aphids in a changing world: testing the plant stress, plant vigour and pulsed stress hypotheses. Agricultural and Forest Entomology, 14, 177–185.

Taub D R, Wang X. 2008. Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses. Journal of Integrative Plant Biology, 50, 1365–1374.

Teng N, Wang J, Chen T, Wu X, Wang Y, Lin J. 2006. Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytology, 172, 92–103.

Thurston M I, Pallett D W, Cortina-Borja M, Edwards M L, Raybould A F, Cooper J I. 2001. The incidence of viruses in wild Brassica nigra in Dorset (UK). Annals of Applied Biology, 139, 277–284.

Ton L B, Qayyum Z, Amas J, Thomas W J W, Edwards D, Batley J, Dolatabadian A. 2025. Applications of CRISPR/Cas tools in improving stress tolerance in Brassica crops. Frontiers in Plant Science, 16, 1616526.

Trębicki P, Dáder D, Vassiliadis S, Fereres A. 2017. Insect–plant–pathogen interactions as shaped by future climate: effects on biology, distribution, and implications for agriculture. Insect Science, 24, 975–989.

Trębicki P, Vandegeer R K, Bosque-Pérez N A, Powell K S, Dader B, Freeman A J, Yen A L, Fitzgerald G J, Luck J E. 2016. Virus infection mediates the effects of elevated CO2 on plants and vectors. Scientific Reports, 6, 22785.

Trebicki P. 2020. Climate change and plant virus epidemiology. Virus Research, 286, 198059.

van Munster M, Yvon M, Vile D, Dader B, Fereres A, Blanc S. 2017. Water deficit enhances the transmission of plant viruses by insect vectors. PLoS One, 12, e0174398.

Walsh J A, Jenner C E. 2002. Turnip mosaic virus and the quest for durable resistance. Molecular Plant Pathology, 3, 289–300.

Walsh J A, Sharpe A G, Jenner C E, Lydiate D J, 1999. Characterisation of resistance to turnip mosaic virus in oilseed rape (Brassica napus) and genetic mapping of TuRB01. Theoretical and Applied Genetics, 99, 1149–1154.

Wang Y, Bao Z, Zhu Y, Hua J. 2009. Analysis of temperature modulation of plant defence against biotrophic microbes. Molecular Plant-Microbe Interaction, 22, 498–506.

Xiang H Y, Dong S W, Shang Q X, Zhou C J, Li D W, Yu J L, Han C G. 2011. Molecular characterization of two genotypes of a new polerovirus infecting Brassicas in China. Archives of Virology, 156, 2251–2255.

Xie H, Shi F, Li J, Yu M, Yang X, Li Y, Fan J.  2022. The Reciprocal Effect of Elevated CO2 and Drought on Wheat-Aphid Interaction System. Frontiers in Plant Science, 13, 853220.

Xinhua W, Yang L, Huoying C. 2011. A linkage map of pak-choi (Brassica rapa ssp. chinensis) based on AFLP and SSR markers and identification of AFLP markers for resistance to TuMV. Plant Breeding, 130, 275–277.

Xu X, Yu T, Zhang D, Song H, Huang K, Wang Y, Shen L, Li Y, Wang F, Zhang S, Jiao Y, Yang J. 2023. Evaluation of the anti-viral efficacy of three different dsRNA nanoparticles against potato virus Y using various delivery methods.
Ecotoxicology and environmental safety, 255, 114775.

Yasaka R, Fukagawa H, Ikematsu M, Soda H, Korkmaz S, Golnaraghi A, Katis N, Ho S Y W, Gibbs A J, Ohshima K. 2017. The timescale of emergence and spread of turnip mosaic potyvirus. Scientific Reports, 7, 4240.

Yasaka R, Nguyen H D, Ho S Y, Duchêne S, Korkmaz S, Katis N, Takahashi H, Gibbs A J, Ohshima K. 2014. The temporal evolution and global spread of cauliflower mosaic virus, a plant pararetrovirus. PLoS One, 9, e85641.

Yoshida N, Tamada T. 2019. Host range and molecular analysis of beet leaf yellowing virus, beet western yellows virus-JP and brassica yellows virus in Japan. Plant Pathology, 68, 1045–1058.

Yu E, Fan C, Yang Q, Li X, Wan B, Dong Y, Wang X, Zhou Y. 2014. Identification of heat responsive genes in Brassica napus siliques at the seed-filling stage through transcriptional profiling. PLoS One, 9, e101914.

Yuan P, Poovaiah B W. 2022. Interplay between Ca2+/Calmodulin-mediated signalling and AtSR1/CAMTA3 during increased temperature resulting in compromised immune response in plants. International journal of molecular sciences. 23, 2175.

Yvon M, Vile D, Brault V, Blanc S, van Munster M. 2017. Drought reduces transmission of Turnip yellows virus, an insect-vectored circulative virus. Virus Research, 241, 131-136.

Zhang F L, Wang M, Liu X C, Zhao X Y, Yang J P. 2008. Quantitative trait loci analysis for resistance against Turnip mosaic virus based on a doubled-haploid population in Chinese cabbage. Plant Breeding, 127, 82–86.

Zhang X W, Yuan Y X, Wang X W, Sun R F, Wu J, Xie C H, Jiang W S, Yao Q J. 2009. QTL mapping for TuMV resistance in Chinese cabbage [Brassica campestris L. ssp. Pekinensis (lour. ) O lssom]. Acta Horticulturae Sinica, 36, 731-736.

Zhang X Y, Xiang H Y, Zhou C J, Li D W, Yu J L, Han C G. 2014. Complete genome sequence analysis identifies a new genotype of brassica yellows virus that infects cabbage and radish in China. Archives of Virology, 159, 2177–2180.

Zhang Y, Li X. 2019. Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Current Opinion in Plant Biology, 50, 29–36.

Zheng Q, Liu K. 2022. Worldwide rapeseed (Brassica napus L.) research: A bibliometric analysis during 2011–2021. Oil Crop Science, 7, 157–165.

Zhong S H, Liu J Z, Jin H, Lin L, Li Q, Chen Y, Yuan Y X, Wang Z Y, Huang H, Qi Y J, Chen X Y, Vaucheret H, Chory J, Li J, He Z H. 2013. Warm temperatures induce transgenerational epigenetic release of RNA silencing by inhibiting siRNA biogenesis in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 110, 9171–9176.

Zlobin N, Taranov V. 2023. Plant eIF4E isoforms as factors of susceptibility and resistance to potyviruses. Frontiers in Plant Science, 14, 1041868.

Zvereva E L, Kozlov M V. 2006. Consequences of simultaneous elevation of carbon dioxide and temperature for plant–herbivore interactions: a meta-analysis. Global Change Biology, 12, 27–41.


No related articles found!
No Suggested Reading articles found!