Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Warming alters fresh-carbon assimilating bacterial community relevant to priming effect in Mollisols

Yan Gao1, Yansheng Li1, Zhenhua Yu1, Zhuxiu Liu1, Jinyuan Zhang1, Xiaojing Hu1, Jun Wang2, Hanting Cheng3, Rong Li4, Caixian Tang5, Junjie Liu1, Junjiang Wu6, Guanghua Wang1, Xiaobing Liu1, Yueyu Sui1, Jian Jin1, 5#

1 State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China 

2 State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China

3 Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China

4 The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China

5 La Trobe Institute for Sustainable Agriculture and FoodDepartment of Ecological, Plant and Animal Sciences, La Trobe University, Melbourne Campus, Bundoora, Vic 3086, Australia

6 Key Laboratory of Soybean Cultivation of Ministry of Agriculture, Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China

 Highlights 

l Warming reversed the priming effect over time in the Mollisol.

l Glucose-assimilating r-strategists changed to K-strategists under warming.

l Warming enriched Chloroflexi, contributing to positive priming effect.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

在外源碳输入的条件下,土壤微生物对气候变暖的响应可能通过正激发效应显著促进土壤原有有机碳(SOC)的分解。阐明外源碳代谢微生物群落的特征与动态,对揭示气候变暖背景下激发效应的形成机制进而缓解全球变暖导致的土壤碳损失具有重要意义。本研究通过在253545℃条件下进行为期四周的培养实验,每周添加¹³C标记葡萄糖,并结合DNA稳定同位素探针技术(DNA-SIP),系统揭示了同化葡萄糖的微生物群落组成及其功能变化与激发效应的关联。研究结果表明,升温初期(第1周)抑制了激发效应,同时降低了细菌α多样性、K策略/r策略细菌相对丰度比例(K/r)及难降解碳/易降解碳代谢基因比例(R/L)。这表明在外源碳输入初期,升温促使更多r策略细菌群落,优先利用添加的葡萄糖以满足其能量需求,而非分解SOC。然而至第4周,升温显著增强了正激发效应,在45℃条件下其强度可达初始值的3.8倍。同时,该阶段激发效应K/rR/L比例以及几丁质降解基因丰度呈显著正相关。这些功能变化与资源获取型微生物(如Streptomyces)丰度上升的趋势一致。从第1周至第4周,升温引起葡萄糖同化细菌群落结构发生明显演替,具体表现为Actinobacteria相对丰度下降,而Chloroflexi丰度显著增加。综上,随着时间推移,增温诱导的激发效应产生与微生物群落结构及其代谢功能的动态变化密切相关。本研究从微生物代谢功能与群落演替角度,为理解气候变暖如何调控外源碳利用及其对土壤有机碳矿化的影响提供了重要依据,进一步揭示了土壤碳矿化与气候变暖之间存在的正向反馈机制。



Abstract  
Soil microbial response to warming may potentially contribute to the positive priming effect, i.e. accelerating the decomposition of native soil organic carbon (SOC) under the outsourced carbon (C) input. Investigating microbiota that metabolize the outsourced C is essential to deciphering the mechanism of priming effect in response to warming and thus mitigating the SOC loss under warming climate. In this work, we monitored the priming effect at 25, 35 and 45°C over four weeks with weekly addition of 13C-glucose, and subsequently revealed microbial assemblage metabolizing glucose with the DNA stable-isotope probing (DNA-SIP) method. Warming initially inhibited the priming effect, and decreased bacterial α-diversity, K/r-strategists ratio (K/r)  and recalcitrant C/labile C gene ratio (R/L) in week 1, suggesting that at the onset of the outsourced C input, the increased proportion of r-strategists preferentially utilize the added glucose over SOC to meet their C and energy demands. Yet, in week 4, positive priming effects were intensified by warming with up to 3.8-fold increase at 45°C. Additionally, the primed C was positively correlated with K/r, R/L, and the abundances of chitin degradation genes in week 4. These functions concurred with an increase in the abundance of resource-acquisition strategists such as Streptomyces affiliated to Actinobacteria under warming conditions over time. From week 1 to 4, warming induced a distinctive change in glucose-assimilating bacterial community compositions with a particular decrease in the relative abundance of Actinobacteria while an enriched abundance of Chloroflexi. Taken together, warming-triggered change of priming effect depended on alternation of microbiota and metabolic function over time. These findings provide important insights of how warming mediates microbial metabolic use of fresh C and subsequent SOC mineralization, reflecting the positive feedback between soil C emission and climate warming.


Keywords:  carbon decomposition       climate change              DNA-SIP              bacterial life strategy              functional genes  
Online: 07 January 2026  
Fund: 

The project was funded by the International Partnership Program of Chinese Academy of Sciences (131323KYSB20210004), the Strategic Priority Research Program of Chinese Academy of Sciences (XDA28020201), the National Key R & D Program of China (2021YFD1500400), the Key Program of Natural Science Foundation of Heilongjiang Province, China (ZD2021D001), Australian Research Council (DP210100775).

About author:  Yan Gao, E-mail: gaoyan@iga.ac.cn; #Correspondence Jian Jin, E-mail: jinjian29@hotmail.com

Cite this article: 

Yan Gao, Yansheng Li, Zhenhua Yu, Zhuxiu Liu, Jinyuan Zhang, Xiaojing Hu, Jun Wang, Hanting Cheng, Rong Li, Caixian Tang, Junjie Liu, Junjiang Wu, Guanghua Wang, Xiaobing Liu, Yueyu Sui, Jian Jin. 2026. Warming alters fresh-carbon assimilating bacterial community relevant to priming effect in Mollisols. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2026.01.003

Ali H E, Reineking B, Münkemüller T. 2017. Effects of plant functional traits on soil stability: Intraspecific variability matters. Plant and Soil, 411, 359–375.

Ali R S, Poll C, Kandeler E. 2018. Dynamics of soil respiration and microbial communities: Interactive controls of temperature and substrate quality. Soil Biology and Biochemistry, 127, 60–70.

Baumann K, Sanaullah M, Chabbi A, Dignac M F, Bardoux G, Steffens M, Kögel Knabner I, Rumpel C. 2013. Changes in litter chemistry and soil lignin signature during decomposition and stabilisation of 13C labelled wheat roots in three subsoil horizons. Soil Biology and Biochemistry, 67, 55–61.

Billings S A, Ballantyne I F. 2013. How interactions between microbial resource demands, soil organic matter stoichiometry, and substrate reactivity determine the direction and magnitude of soil respiratory responses to warming. Global Change Biology, 19, 90–102.

Blagodatskaya E, Kuzyakov Y. 2008. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: Critical review. Biology and Fertility of Soils, 45, 115–131.

Chen G, Fang Y, van Zwieten L, Xuan Y, Tavakkoli E, Wang X, Zhang R. 2021. Priming, stabilization and temperature sensitivity of native SOC is controlled by microbial responses and physicochemical properties of biochar. Soil Biology and Biochemistry, 154, 108139.

Cheng W, Parton W J, Gonzalez-Meler M A, Phillips R, Asao S, McNickle G, Brzostek E, Jastrow J. 2014. Synthesis and modeling perspectives of rhizosphere priming. New Phytologist, 201, 31–44.

Creamer C A, de Menezes A B, Krull E S, Sanderman J, New-ton-Walters R, Farrell M. 2015. Microbial community structure mediates response of soil C decomposition to litter addition and warming. Soil Biology and Biochemistry, 80, 175–188.

Crowther T W,  Todd-Brown K E O, Rowe C W, Wieder W R, Carey J C, Machmuller M B, Snoek B L, Fang S, Zhou G, Allison S D, Blair J M, Bridgham S D, Burton A J, Carrillo Y, Reich P B, Clark J S, Classen A T, Dijkstra F A, Elberling B, Emmett B A, et al. 2016. Quantifying global soil carbon losses in response to warming. Nature, 540, 104108.

Cui J, Wei L, Zhu Z K, Deng Y W, Chen S, Kuzyakov Y, Ge T D. 2024. Influence of soil N availability on priming effects depending on temperature. Soil Tillage Research, 242, 106163.

Cui J, Zhu Z, Xu X, Liu S, Jones D L, Kuzyakov Y, Shibistova O, Wu J, Ge T. 2020. Carbon and nitrogen recycling from microbial necromass to cope with C:N stoichiometric imbalance by priming. Soil Biology and Biochemistry, 142, 107720.

Cui Y, Fang L, Guo X, Wang X, Zhang Y, Li P, Zhang X. 2018. Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China. Soil Biology and Biochemistry, 116, 11–21.

Davis K E R, Sangwan P, Janssen P H. 2011. Acidobacteria, Rubrobacteridae and Chloroflexi are abundant among very slow growing and mini-colony-forming soil bacteria. Environmental Microbiology, 13, 798–805.

Ding J X, He Y H, Yin L M, Huang C J, Xue K, Yan S B, Liu R Q, Wang P, Zhou X H. 2025. Divergent responses of soil positive and negative priming effects to experimental warming. Global Ecology and Biogeography, 34, e70028.

Dong H, Lin J, Lu J, Li L, Yu Z, Kumar A, Zhang Q, Liu D, Chen B. 2022. Priming effects of surface soil organic carbon decreased with warming: A global meta-analysis. Plant and Soil, 500, 233–242.

Dong M Q, Zhao J, Li E, Liu Z J, Guo S B, Zhang Z T, Cui W Q, Yang X G. 2023. Effects of changing climate extremes on maize grain yield in Northeast China. Agronomy, 13, 1050.

Douglas G M, Mafei V J, Zaneveld J, Yurgel S N, Brown J R, Taylor C M, Huttenhower C, Langille M G I. 2019. PICRUSt2: An improved and extensible approach for metagenome inference. BioRxiv, 672295.

Eilers K G, Lauber C L, Knight R, Fierer N. 2010. Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biology and Biochemistry, 42, 896–903.

Fang Y, Van Zwieten L, Rose M T, Vasileiadis S, Donner E, Vancov T, Rigg J L, Weng Z, Lombi E, Drigo B, Conyers M, Tavakkoli E. 2022. Unraveling microbiomes and functions associated with strategic tillage, stubble, and fertilizer management. Agriculture, Ecosystems & Environment, 323, 107686.

Fanin N, Alavoine G, Bertrand I. 2020. Temporal dynamics of litter quality, soil properties and microbial strategies as main drivers of the priming effect. Geoderma, 377, 114576.

Feng J G, Tang M, Zhu B. 2021. Soil priming effect and its responses to nutrient addition along a tropical forest elevation gradient.  Global Change Biology, 27, 2793-2806.

Fierer N, Bradford M A, Jackson A R B. 2007. Toward an ecological classification of soil bacteria. Ecology, 88, 1354–1364.

Fontaine S, Bardoux G, Abbadie L, Mariotti A. 2004. Carbon input to soil may decrease soil carbon content. Ecology Letters, 7, 314–320.

Fu Y Y, Liu W L, Chen Z Y, Redmile-Gordon M, Liang C, Tang C, Guggenberger G, Yan S B, Yin L M, Peng J J, Zwieten L V, Wang P, Chen J, Kuzyakov Y, Ge T D, Xu J M, Luo Y. 2025. Microbial metabolisms determine soil priming effect induced by organic inputs. Soil Biology and Biochemistry, 209, 109885.

Ghee C, Neilson R, Hallett P D, Robinson D, Paterson E. 2013. Priming of soil organic matter mineralization is intrinsically insensitive to temperature. Soil Biology and Biochemistry, 66, 20–28.

Guo L, Yu Z, Li Y, Xie Z, Wang G, Liu J, Hu X, Wu J, Liu X, Jin J. 2023. Stimulation of primed carbon under climate change corresponds with phosphorus mineralization in the rhizosphere of soybean. Science of the Total Environment, 899, 165580.

Guttières R, Nunan N, Raynaud X, Lacroix G, Barot S, Barré P, Girardin C, Guenet B, Lata J C, Abbadie L. 2021. Temperature and soil management effects on carbon fluxes and priming effect intensity. Soil Biology and Biochemistry, 153, 108103.

Hou Z N, Liu W Z, Xu S Q, Chang S, Zhang X J, Wang R H, Luo D Q, Wang B R, An S S, Qiao Y H, Du Z L, Wei Y Q. 2025. Warming-induced response of microbial diversity and functions regulated microbial necromass and soil multifunctionality. Applied Soil Ecology, 206, 105798.

Huang Q, Wang B R, Shen J K, Xu F J, Li N, Jia P H, Jia Y J, An S S, Amoah I D, Huang Y M. 2024. Shifts in C-degradation genes and microbial metabolic activity with vegetation types affected the surface soil organic carbon pool. Soil Biology and Biochemistry, 192, 109371.

Huo C F, Luo Y Q, Cheng W X. 2017. Rhizosphere priming effect: a meta-analysis. Soil Biology and Biochemistry, 111, 7884.

Jenkinson D S, Brookes P C, Powlson D S. 2004. Measuring soil microbial biomass. Soil Biology and Biochemistry, 36, 5–7.

Kaiser C, Franklin O, Dieckmann U, Richter A. 2014. Microbial community dynamics alleviate stoichiometric constraints during litter decay. Ecology Letters, 7, 680–690.

Karimi B, Maron P A, Chemidlin-Prevost Boure N, Bernard N, Gilbert D, Ranjard L. 2017. Microbial diversity and ecological networks as indicators of environmental quality. Environmental Chemistry Letters, 15, 265–281.

Khodadad C L M M, Zimmerman A R, Green S J, Uthandi S, Foster J S. 2011. Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments. Soil Biology and Biochemistry, 43, 385–392.

Kuzyakov Y. 2010. Priming effects: Interactions between living and dead organic matter. Soil Biology and Biochemistry, 42, 1363–1371.

Kuzyakov Y, Mason-Jones K. 2018. Viruses in soil: Nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions. Soil Biology and Biochemistry, 127, 305–317.

Lehmann J, Kleber M. 2015. The contentious nature of soil organic matter. Nature, 528, 60–68.

Li H, Yang S, Semenov M V, Yao F, Ye J, Bu R, Ma R, Lin J, Kurganova I, Wang X, Deng Y, Kravchenko I, Jiang Y, Kuzyakov Y. 2021. Temperature sensitivity of SOM decomposition is linked with a K-selected microbial community. Global Change Biology, 27, 2763–2779.

Li L, Zhu-Barker X, Ye R, Doane T A, Horwath W R. 2018. Soil microbial biomass size and soil carbon influence the priming effect from carbon inputs depending on nitrogen availability. Soil Biology and Biochemistry, 119, 41–49.

Li X, Feng J, Zhang Q, Zhu B. 2023. Warming inhibits the priming effect of soil organic carbon mineralization: A meta-analysis. Science of the Total Environment, 904, 166170.

Liang C, Amelung W, Lehmann J, Kastner M. 2019. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology, 25, 3578–3590.

Liang Y, Cao D, Ma Z, Wu R, Zhang H, Fang Y, Shahbaz M, Liu X J A, Kuzyakov Y, Chen J, Ge T. 2024. Stoichiometry regulates rice straw-induced priming effect: The microbial life strategies. Soil Biology and Biochemistry, 196, 109514.

Lyu L H, Wang C Q, Fan K K, Li J S, Yang T, Gao G F, Sun R, Wang J, Xu X Y, Zhang Y X, Ma Y Y, Zhang J B, Kuzyakov Y, Chu H Y. 2025. Microbial life-history strategies mediate temperature effects on organic carbon pools in black soils. Soil Ecology Letters, 7, 250306.

Ma S, Zhu W, Wang W, Li X, Sheng Z. 2023. Microbial assemblies with distinct trophic strategies drive changes in soil microbial carbon use efficiency along vegetation primary succession in a glacier retreat area of the southeastern Tibetan Plateau. Science of the Total Environment, 867, 161587.

Paul E A. 2007. Soil Microbiology, Ecology, and Biochemistry. Academic Press, New York.

Pausch J, Holz M, Zhu B, Cheng W X. 2024. Rhizosphere priming promotes plant nitrogen acquisition by microbial necromass recycling. Plant, Cell & Environment, 47, 1987-1996.

Pingthaisong W, Blagodatsky S, Vityakon P, Cadisch G. 2024. Mixing plant residues of different quality reduces priming effect and contributes to soil carbon retention. Soil Biology and Biochemistry, 188, 109242.

Razanamalala K, Razafimbelo T, Maron P A, Ranjard L, Chemidlin N, Lelievre M, Dequiedt S, Ramaroson V H, Marsden C, Becquer T, Trap J, Blanchart E, Bernard L. 2018. Soil microbial diversity drives the priming effect along climate gradients: A case study in Madagascar. ISME Journal, 12, 451–462.

Reji L, Darnajoux R, Zhang X N. 2024. A genomic view of environmental and life history controls on microbial nitrogen acquisition strategies. Environmental Microbiology Reports, 16, e13220.

Ren C, Wang J, Bastida F, Delgado-Baquerizo M, Yang Y, Wang J, Zhong Z, Zhou Z, Zhang S, Guo Y, Zhou S, Wei G, Han X, Yang G, Zhao F. 2022. Microbial traits determine soil C emission in response to fresh carbon inputs in forests across biomes. Global Change Biology, 28, 1516–1528.

Ren T, Huang X, Sun H, Xie H, Jia Z, Wang J. 2025. Comparison on responses of black soil microorganisms to exogenous carbon and nitrogen addition under no-tillage with straw mulching and combined application of organic and inorganic fertilizers. Acta Microbiologica Sinica, 65, 3348-3364. (in Chinese)

Song X, Liu X, Liang G, Li S, Li J, Zhang M, Zheng F, Ding W, Wu X, Wu H. 2022. Positive priming effect explained by microbial nitrogen mining and stoichiometric decomposition at different stages. Soil Biology and Biochemistry, 175, 108852.

Tan F, Cheng J, Zhang Y, Jiang X, Liu Y. 2022. Genomics analysis and degradation characteristics of lignin by Streptomyces thermocarboxydus strain DF3-3. Biotechnology for Biofuels and Bioproducts, 15, 1–15.

Tao X Y, Yang Z F, Feng J J, Jian S Y,Yang Y F, Bates C T, Wang G S, Guo X, Ning D L, Kempher M L, Liu X J A, Ouyang Y, Han S, Wu L W, Zeng Y F, Kuang J L, Zhang Y, Zhou X S, Shi Z, Qin W, et al. 2024. Experimental warming accelerates positive soil priming in a temperate grassland ecosystem. Nature Communications, 15, 1178.

Tian Q, Jiang Q, Zhao R, Wu Y, Lin Q, Zhao X, Tang Z, Liu F. 2023. Microbial properties control soil priming and exogenous carbon incorporation along an elevation gradient. Geoderma, 431, 116343.

Tong Y X, Liu J G, Li X L, Sun J, Herzberger A, Wei D, Zhang W F, Dou Z X, Zhang F S. 2017. Cropping system conversion led to organic carbon change in Chinas Mollisols regions. Scientific Report, 7, 18064.

Vance E D, Brookes P C, Jenkinson D S. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703–707.

Wagg C, Schlaeppi K, Banerjee S, Kuramae E E, van der Heijden M G A. 2019. Fungalbacterial diversity and microbiome complexity predict ecosystem functioning. Nature Communications, 10, 4841.

Wang J, Pan F, Soininen J, Heino J, Shen J. 2016. Nutrient enrichment modifies temperature biodiversity relationships in large-scale field experiments. Nature Communications, 7, 13960.

Wang J, Yao H Y, Zhang X. 2024. The effect of the 13C abundance of soil microbial DNA on identifying labelled fractions after ultracentrifugation. Applied Microbiology and Biotechnology, 108, 318.

Xu Q, Jin J, Wang X, Armstrong R, Tang C. 2019. Susceptibility of soil organic carbon to priming after long-term CO2 fumigation is mediated by soil texture. Science of the Total Environment, 657, 1112–1120.

Yanni S F, Diochon A, Helgason B L, Ellert B H, Gregorich E G. 2018. Temperature response of plant residue and soil organic matter decomposition in soil from different depths. European Journal of Soil Science, 69, 325–335.

You M, He P, Dai S, Burger M, Li L J. 2021. Priming effect of stable C pool in soil and its temperature sensitivity. Geoderma, 401, 115216.

Yu X Y, Ma Y Y. 2022. Spatial and temporal analysis of extreme climate events over Northeast China. Atmosphere, 13, 1197.

Yu Z Y, Ling L, Singh BP, Luo Y, Xu J M. 2020. Gain in carbon: Deciphering the abiotic and biotic mechanisms of biochar-induced negative priming effects in contrasting soils. Science of the Total Environment, 746, 141057.

Zhang H, Chang D, Zhu Z, Meng C, Wang K. 2024. Soil priming effects and involved microbial community along salt gradients. Biogeosciences, 21, 1–11.

Zhao F, Wang J, Li Y, Xu X, He L, Wang J, Ren C, Guo Y. 2022. Microbial functional genes driving the positive priming effect in forest soils along an elevation gradient. Soil Biology and Biochemistry, 165, 108498.

Zhao J, Xie X, Jiang Y, Li J, Fu Q, Qiu Y, Fu X, Yao Z, Dai Z, Qiu Y. 2024. Effects of simulated warming on soil microbial community diversity and composition across diverse ecosystems. Science of the Total Environment, 911, 168793.

Zheng Y, Wang X, Hayden H, Franks A, Shindler A, Liu Y, Clark G, Jin J, Tang C. 2023. Soil types differ in the temporal response of the priming effect to N addition: A study on microbial mechanisms. Biology and Fertility of Soils, 59, 233–247.

Zhong Z K, Li W J, Lu X Q, Gu Y Q, Wu S J, Shen Z Y, Han X H, Yang G H, Ren C J. 2020. Adaptive pathways of soil microorganisms to stoichiometric imbalances regulate microbial respiration following afforestation in the Loess Plateau, China. Soil Biology and Biochemistry, 151, 108048.

Zhou J, Liu Y, Liu C Y, Zamanian K, Feng W H, Steiner S K, Shi L L, Guillaume T, Kumar A. 2024. Necromass responses to warming: A faster microbial turnover in favor of soil carbon stabilisation. Science of the Total Environment, 954,176651.

Zhou S, Wang J, Chen L, Wang J, Zhao F. 2022. Microbial community structure and functional genes drive soil priming effect following afforestation. Science of the Total Environment, 825, 153925.

Zhu Z, Fang Y, Liang Y, Li Y, Liu S, Li Y, Li B, Gao W, Yuan H, Kuzyakov Y, Wu J, Richter A, Ge T. 2022. Stoichiometric regulation of priming effects and soil carbon balance by microbial life strategies. Soil Biology and Biochemistry, 169, 108669.

No related articles found!
No Suggested Reading articles found!