Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Identification of a 6P chromosome segment from Agropyron cristatum that increases anthocyanin and hydrolyzed amino acid contents in wheat

Junli Yang1, 2*, Haiming Han2*#, Baojin Guo2, Shenghui Zhou2, Jinpeng Zhang2, Weihua Liu2, Xinming Yang2, Lihui Li2, 3#

1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China

2 State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

3 Yazhouwan National Laboratory, Sanya 572024, China

 Highlights 

1. Two novel black-grained wheat lines (PB31334 and PB31340) were identified among the wheat–Agropyron cristatum derivatives and exhibited significantly greater amounts of anthocyanin than common wheat did.

2. The 6P chromosome from A. cristatum controlled the black grain trait, and the gene was localized to 6PL (bin 6–17).

3. The 6PL (bin 6–17) region significantly increased the anthocyanin content without negatively affecting yield traits, making it a valuable resource for improving wheat nutrition.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

小麦是全球重要的粮食作物,随着膳食结构的不断变化,人们对小麦营养品质提升的需求日益增加。黑粒小麦是一类富含多种营养成分的优良种质资源。冰草(Agropyron cristatum Gaertn2n = 4x = 28PPPP)为小麦野生近缘种,携带众多可供小麦遗传改良的优异基因。本研究在小麦–冰草衍生系中鉴定到2个黑粒材料PB31334PB31340,与普通小麦相比,其花青素含量显著提高,且氨基酸含量呈增加趋势。我们将PB31334PB31340分别与Fukuho和西农979杂交构建了4个遗传分离群体,并进行遗传分析。结果表明黑粒材料PB31334PB31340为小麦–冰草6P6A)二体代换系,其黑粒性状受来源于冰草的外源6P染色体所控制。进一步鉴定到3个缺失系材料,包括分别携带6P染色体短臂(6PS)和长臂(6PL)的端体系,以及缺失6PLbin 617)的6PL缺失系。其中,仅携带6PL端体的材料籽粒表现为黑粒,其余两个材料均未表现出黑粒表型,进而将控制黑粒性状的相关基因定位于6PLbin 617)区段。值得注意的是,6PL 端体系中总花青素含量显著提高,与籽粒着色程度呈正相关,且该片段的渗入未对穗粒数和千粒重产生显著影响。因此,新鉴定的冰草6PL染色体系富含花青素,是改善小麦营养品质的重要遗传资源。



Abstract  

Wheat is a major staple crop worldwide, and with the ongoing changes in dietary patterns, the demand for improved nutritional quality in wheat has been increasing. Black-grained wheat is a promising germplasm rich in nutrients. Agropyron cristatum (2n = 4x = 28, PPPP) is a wild relative of wheat that carries several desirable genes for genetic improvement. Here, we identified black-grained lines PB31334 and PB31340 from wheat–A. cristatum derivatives, which exhibited significantly higher anthocyanin content and possibly increased amino acid content compared with common wheat. These lines were identified as wheat–A. cristatum 6P (6A) disomic substitution lines, with the alien chromosome 6P from A. cristatum responsible for the black grain trait, as revealed by genetic analysis of four segregated populations created by crossing PB31334 and PB31340 with Fukuho and Xinong979. Additionally, three lines were identified, including telosomic lines carrying the short arm (6PS) and the long arm (6PL) of alien chromosome 6P, as well as a 6PL-deletion line lacking a partial segment of the long arm (bin 6–17). The line with 6PL displayed the black grain trait, whereas the other two did not. The gene was localized to the 6PL (bin 6–17) region without affecting the grain number per spike or thousand-grain weight. Notably, the total anthocyanin content increased in 6PL telosomic line and was positively correlated with grain coloration. The newly identified 6PL chromosomal region is a valuable resource rich in anthocyanins, offering a promising avenue for increasing the nutritional content of wheat.

Keywords:  Agropyron cristatum        wheat       chromosome 6P       genetic analysis       black grain  
Online: 31 December 2025  
Fund: 

This work was financially supported by the National Key Research and Development Program of China (2021YFD1200600) and the Chinese Agriculture Research System, grant number CARS-03.

About author:  #Correspondence Haiming Han, E-mail: hanhaiming@caas.cn; Lihui Li, E-mail: lilihui@caas.cn *These authors contributed equally to this work.

Cite this article: 

Junli Yang, Haiming Han, Baojin Guo, Shenghui Zhou, Jinpeng Zhang, Weihua Liu, Xinming Yang, Lihui Li. 2025. Identification of a 6P chromosome segment from Agropyron cristatum that increases anthocyanin and hydrolyzed amino acid contents in wheat. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.12.078

Allen G C, Flores-Vergara M A, Krasynanski S, Kumar S, Thompson W F. 2006. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nature Protocols, 1, 2320–2325.

Anjum F M, Ahmad I, Butt M S, Sheikh M A, Pasha I. 2005. Amino acid composition of spring wheats and losses of lysine during chapati baking. Journal of Food Composition & Analysis, 18, 523–532.

Arjinajarn P, Chueakula N, Pongchaidecha A, Jaikumkao K, Chatsudthipong V, Mahatheeranont S, Norkaew O, Chattipakorn N, Lungkaphin A. 2017. Anthocyanin-rich riceberry bran extract attenuates gentamicin-induced hepatotoxicity by reducing oxidative stress, inflammation and apoptosis in rats. Biomedicine Pharmacotherapy, 92, 412–420.

Bai L. 2012. Comparative mapping of wheat–Agropyron cristatum 6P addition lines and molecular markers of its introgression lines. MSc thesis, Chinese Academy of Agricultural Sciences, Beijing. (in Chinese)

Bolger A M, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30, 2114–2120.

Bondonno N P, Dalgaard F, Kyrø C, Murray K, Bondonno C P, Lewis J R, Croft K D, Gislason G, Scalbert A, Cassidy A, Tjønneland A, Overvad K, Hodgson J M. 2019. Flavonoid intake is associated with lower mortality in the Danish diet cancer and health cohort. Nature Communications, 10, 3651.

Cao L, Han G H, Liu H, Yan H W, Jin Y L, Cao L J, Zhou Y L, An D G. 2023. Development of novel wheat–rye 6RS small fragment translocation lines with powdery mildew resistance and physical mapping of the resistance gene PmW6RS. Theoretical and Applied Genetics, 136, 108.

Chen D, Zhang J P, Wang J S, Yang X M, Liu W H, Gao A N, Li X Q, Li L H. 2012. Inheritance and availability of high grain number per spike in two wheat germplasm lines. Journal of Integrative Agriculture, 11, 1409–1416.

Chen H Y, Chen X D, Yu L S. 2020. Research progress on the formation mechanism, biological function and application development of melanin. Biological Resources, 42, 652–659.

Cheng X F, Xiao Y, Wang L H, Yang X Y, Deng P C, Zhao J X, Wang C Y, Chen C H, Li T D, Ji W Q. 2026. Cytogenetic characterization and molecular marker development of a novel wheatThinopyrum ponticum 5E (5D) disomic substitution line with resistance to powdery mildew and stripe rust. Journal of Integrative Agriculture, 25, 3041.

Dong Y C, Zheng D S. 2000. Genetic Resources of Wheat in China. China Agricultural Press, Beijing. p. 175.

Du H M, Tang Z X, Duan Q, Tang S Y, Fu S L. 2018. Using the 6RLku minichromosome of rye (Secale cereale L.) to create wheat–rye 6D/6RLku small segment translocation lines with powdery mildew resistance. International Journal of Molecular Sciences, 19, 3933.

Friebe B, Kynast R G, Zhang P, Qi L L, Dhar M, Gill B S. 2001. Chromosome healing by addition of telomeric repeats in wheat occurs during the first mitotic divisions of the sporophyte and is a gradual process. Chromosome Research, 9, 137–146.

Friebe B, Larter E N. 1988. Identification of a complete set of isogenic wheat–rye D genome substitution lines by means of Giemsa C-banding. Theoretical and Applied Genetics, 76, 473–479.

Friebe B, Zhang P, Linc G, Gill B S. 2005. Robertsonian translocations in wheat arise by centric misdivision of univalents at anaphase I and rejoining of broken centromeres during interkinesis of meiosis II. Cytogenetic and Genome Research, 109, 293–297.

GB 5009.268-2016. 2016. National Food Safety Standard: Determination of Multi-elements in Food. National Health and Family Planning Commission of the People's Republic of China. Standards Press of China, Beijing.

Gordeeva E I, Glagoleva A Y, Kukoeva T V, Khlestkina E K, Shoevaet O Y. 2019. Purple-seeded barley (Hordeum vulgare L.): Marker-assisted development of NILs for investigating peculiarities of the anthocyanin biosynthesis regulatory network. BMC Plant Biology, 19, 49–57.

Gordeeva E I, Shoeva O Y, Khlestkina E K. 2015. Marker-assisted development of bread-wheat near-isogenic lines carrying various combinations of purple pericarp (Pp) alleles. Euphytica, 203, 469–476.

Guo Z F, Zhang Z B, Xu P, Guo Y N. 2013. Analysis of nutrient composition of purple wheat. Cereal Research Communications, 41, 293–303.

Han G H, Wang J, Yan H W, Cao L J, Liu S Y, Li X Q, Zhou Y L, Liu W, Gu T T, Shi Z P, Liu H, Li L H, An D G. 2025. Development and molecular cytogenetic identification of a new wheatrye 6RL ditelosomic addition and 1R (1B) substitution line with powdery mildew resistance. Journal of Integrative Agriculture, 24, 7284.

Han H M, Liu W H, Zhang J P, Zhou S H, Yang X M, Li X Q, Li L H. 2019a. Identification of P genome chromosomes in Agropyron cristatum and wheat–A.cristatum derivative lines by FISH. Scientific Reports, 9, 9712.

Han H M, Ma X Y, Wang Z, Qi K, Yang W J, Liu W H, Zhang J P, Zhou S H, Lu Y Q, Yang X M, Li X Q, Li L H. 2023. Chromosome 5P of Agropyron cristatum induces chromosomal translocation by disturbing homologous chromosome pairing in a common wheat background. Crop Journal, 11, 228–237.

Han H M, Zhang Y X, Liu W H, Hu Z M, Li L H. 2015. Degenerate oligonucleotide primed-polymerase chain reaction-based chromosome painting of P genome chromosomes in Agropyron cristatum and Wheat–A. cristatum addition lines. Crop Science, 55, 2798–2805.

Han R, Diao R N, Liang H F, Kuo Y, Wang X L. 2019b. Agropyron cristatum, an important gene source in wheat genetic improvement. Shandong Agricultural Sciences, 51, 1–9. (in Chinese)

He Z H, Zhuang Q S, Cheng S H, Yu Z W, Zhao Z D, Liu X. 2018. China’s wheat industry development and scientific and technological progress. Journal of Agricultural Sciences, 8, 99–106.

Huang W. 2012. Genetic diversity and genetic analysis of grain pigment content in colored wheat. MSc thesis, Shandong Agricultural University, China. (in Chinese)

Jiang B, Liu T G, Li H H, Han H M, Li L H, Zhang J P, Yang X M, Zhou S H, Li X Q, Liu W H. 2018a. Physical mapping of a novel locus conferring leaf rust resistance on the long arm of Agropyron cristatum chromosome 2P. Frontiers in Plant Science, 9, 817.

Jiang W, Liu T, Nan W, Jeewani D C, Niu Y, Li C, Wang Y, Shi X, Wang C, Wang J, Li Y, Gao X, Wang Z. 2018b. Two transcription factors TaPpm1 and TaPpb1 co-regulate the anthocyanin biosynthesis in purple pericarp of wheat. Journal of Experimental Botany, 69, 2555–2567.

Kang H Y, Zhang Z J, Xu L L, Qi W L, Tang Y, Wang H, Zhu W, Li D Y, Zeng J, Wang Y, Fan X, Sha L N, Zhang H Q, Zhou Y H. 2016. Characterization of wheat–Psathyrostachys huashanica small segment translocation line with enhanced kernels per spike and stripe rust resistance. Genome, 59, 221–229.

Khlestkina E K. 2013. Genes determining the coloration of different organs in wheat. Russian Journal of Genetics, 3, 54–65.

Kil Y S, Han A R, Hong M J, Kim J B, Park P H, Choi H, Nam J W. 2021. 1H NMR-based chemometrics to gain insights into the bran of radiation-induced colored wheat mutant. Frontiers in Nutrition, 8, 806744.

Lachman J, Hejtmánková A, Orsák M, Popov M, Martinek P. 2017a. Tocotrienols and tocopherols in colored-grain wheat, tritordeum and barley. Food Chemistry, 240, 725–35.

Lachman J, Martinek P, Kotíková Z, Orsak M, Sulc M. 2017b. Genetics and chemistry of pigments in wheat seeds-A review. Journal of Cereal Science, 74, 145–154.

Lan S Q, Li X P, Liu Y P. 2008. Grain pigment inheritance of blue grain wheat. Journal of Agriculture of North China, 23, 12–14.

Levy A A, Feldman M. 2022. Evolution and origin of bread wheat. The Plant Cell, 34, 2549–2567.

Li H, Durbin R. 2009. Fast and accurate short read alignment with BurrowsWheeler transform. Bioinformatics, 25, 17541760.

Li J B, Dundas I, Dong C G, Li G R, Trethowan R, Yang Z J, Hoxha S, Zhang P. 2020. Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. Theoretical and Applied Genetics, 133, 1095–1107.

Li L H, Li X Q, Li P, Dong Y C, Zhao G S. 1997. Establishment of wheat–Agropyron cristatum alien addition lines I. Cytology of F3, F2BC1, BC4, and BC3F1 progenies. Acta Genetica Sinica, 24, 154–159. (in Chinese)

Li L H, Li X Q, Yang X M. 2006. Description Specification and Data Standard of Wheat Germplasm Resources. China Agricultural Publishing Society, Beijing. pp. 2–3. (in Chinese)

Li X L, Zhang M S, Ren M J, Lu X, Ji N, Wang X H, Xu R H. 2017. Molecular regulation mechanism of anthocyanin synthesis in purple wheat. Journal of Plant Physiology, 53, 521–530.

Lin Y D, Zhou S H, Liang X Z, Guo B J, Han B, Han H M, Zhang J P, Lu Y Q, Zhang Z, Yang X M, Li X Q, Liu W H, Li L H. 2022. Chromosomal mapping of a locus associated with adult-stage resistance to powdery mildew from Agropyron cristatum chromosome 6PL in wheat. Theoretical and Applied Genetics, 135, 2861–2873.

Lin Y D, Zhou S H, Liang X Z, Han B, Yang J L, Guo B J, Zhang J P, Han H M, Liu W H, Yang X M, Li X Q, Li L H. 2023. Introgression of chromosome 6PL terminal segment from Agropyron cristatum to increase both grain number and grain weight in wheat. The Crop Journal, 11, 878–886.

Liu L, Luo Q L, Li H W, Li B, Li Z S, Zheng Q. 2018. Physical mapping of the blue-grained gene from Thinopyrum ponticum chromosome 4Ag and development of blue-grain-related molecular markers and a FISH probe based on SLAF-seq technology. Theoretical and Applied Genetics, 131, 2359–2370.

Liu W, Koo D H, Friebe B, Gill B S. 2016. A set of Triticum aestivumAegilops speltoides Robertsonian translocation lines. Theoretical and Applied Genetics, 129, 2359–2368.

Liu X, Zhang M H, Jiang X M, Li H, Jia Z J, Hao M, Jiang B, Huang L, Ning S H, Yuan Z W, Chen X J, Chen X, Liu D C, Liu B L, Zhang LQ. 2021. TbMYC4A is a candidate gene controlling the blue aleurone trait in a wheat–Triticum boeoticum substitution line. Frontiers in Plant Science, 12, 762265.

Lv M J, Lu Y Q, Li H H, Pan C L, Guo Y, Zhang J P, Yang X M, Li Q C, Liu W H, Li L H. 2016. Transferring desirable genes from Agropyron cristatum 7P chromosome into common wheat. PLoS ONE, 11, e0159577.

Nomi Y, Iwasaki-Kurashige K, Matsumoto H. 2019. Therapeutic effects of anthocyanins for vision and eye health. Molecules, 24, 3311.

Ou J M, Li S R, Pang Q H, Tao J, Zhou Q, Du X Y. 2004. Genetic analysis of black seed coat in wheat Luozhen No. 1. Journal of Southwest Agricultural University, 26, 185–190. (in Chinese)

Padhy A K, Kaur P, Singh S, Kashyap L, Sharma A. 2024. Colored wheat and derived products: Key to global nutritional security. Critical Reviews in Food Science and Nutrition, 64, 1894–1910.

Qi K, Han H, Zhang J, Zhou S, Li X, Yang X, Liu W, Lu Y, Li L. 2021. Development and characterization of novel Triticum aestivumAgropyron cristatum 6P Robertsonian translocation lines. Molecular Breeding, 41, 59.

Qian X K. 2019. Genetic regularity and gene mapping of purple seed character of guizhou purple wheat no.1. MSc thesis, Guizhou University, China. (in Chinese)

Quinlan A R. 2014. BEDTools: The swiss-army tool for genome feature analysis. Current Protocols in Bioinformatics, 47, 1–45.

Saini P, Kumar N, Kumar S, Mwaurah P W, Panghal A, Attkan A K, Singh V K, Garg M K, Singh V. 2020. Bioactive compounds, nutritional benefits and food applications of colored wheat: A comprehensive review. Critical Reviews in Food Science and Nutrition, 61, 3197–3210.

Sharma N, Tiwari V, Vats S, Kumari A, Chunduri V, Kaur S, Kapoor P, Garg M. 2020. Evaluation of anthocyanin content, antioxidant potential and antimicrobial activity of black, purple and blue colored wheat flour and wheat–grass juice against common human pathogens. Molecules, 25, 5785.

Shen X, Li G, Zhang L. 2013. Identification and mapping of the BaThb gene for the blue aleurone trait from Th. bessarabicum on chromosome 4J of wheat. Euphytica, 190, 451–460.

Song L Q, Li L J, Han H M, Gao A N, Yang X M, Li L H, Liu W H. 2013. Efficient induction of wheat–Agropyron cristatum 6P translocation lines and GISH detection. PLoS ONE, 8, e69501.

Song L Q, Lu YQ, Zhang J P, Pan C, Yang X M, Li X Q, Liu W H, Li L H. 2016. Cytological and molecular analysis of wheat–Agropyron cristatum translocation lines with 6P chromosome fragments conferring superior agronomic traits in common wheat. Genome, 59, 840–850.

Song X W, Wei J B, Di S K, Pang Y Z. 2019. Advances in the regulation of anthocyanin transcription factors and metabolic engineering. Journal of Plants, 54, 133–156.

Sun Q, Sun B Q, Wang J H. 2003. Genetic study on grain pigment of black wheat. Seed, 4, 33–34, 37.

Sun Y Y, Lu M J, Han H M, Zhou S H, Lu Y Q, Liu W H, Yang X M, Li X Q, Zhang J P, Liu X, Li L H. 2021. Identification and fine mapping of alien fragments associated with enhanced grain weight from Agropyron cristatum chromosome 7P in common wheat backgrounds. Theoretical and Applied Genetics, 134, 3759–3772.

Tang S Y, Tang Z X, Qiu L, Yang Z J, Li G R, Lang T, Zhu W Q, Zhang J H, Fu S L. 2018. Developing new oligo probes to distinguish specific chromosomal segments and the A, B, D genomes of wheat (Triticum aestivum L.) using ND-FISH. Frontiers in Plant Science, 9, 1104.

Tereshchenko O Y, Pshenichnikova T A, Salina E A, Khlestkina E K. 2012. Development and molecular characterization of a novel wheat genotype having purple seeds colour. Cereal Research Communications, 40, 210–214.

Tiwari V, Kamboj A, Sheoran B, Chaudhary E, Yadav M, Kumari A, Krishania M, Ali U, Tiwari A, Garg M, Bhatnagar A. 2025. Anthocyanin-rich black wheat as a functional food for managing type 2 diabetes mellitus: A study on high fat diet-streptozotocin-induced diabetic rats. Food & Function, 16, 3273–3295.

Tucker E J, Baumann U, Kouidri A, Suchecki R, Baes M, Garcia M, Okada T, Dong C, Wu Y, Sandhu A, Singh M, Langridge P, Wolters P, Albertsen M C, Cigan A M, Whitford R. 2017. Molecular identification of the wheat male fertility gene Ms1 and its prospects for hybrid breeding. Nature Communications, 8, 869.

Wang Q, Cao H M, Wang J C, Gu Z R, Lin Q Y, Zhang Z Y, Zhao X Y, Gao W, Zhu H J, Yan H B, Yan J J, Hao Q T, Zhang Y W. 2024. Fine-mapping and primary analysis of candidate genes associated with seed coat color in mung bean (Vigna radiata L.). Journal of Integrative Agriculture, 23, 25712588.

Wang X, Han B H, Sun Y Y, Kang X L, Zhang M, Han H M, Zhou S H, Liu W H, Lu Y Q, Yang X M, Li X Q, Zhang J P, Liu X, Li L H. 2022. Introgression of chromosome 1P from Agropyron cristatum reduces leaf size and plant height to improve the plant architecture of common wheat. Theoretical and Applied Genetics, 135, 1951–1963.

Wang Y, Yao X H, An L K, Yao Y H, Bai Y X, Wu K L. 2023. Research progress on the mechanism of grain color formation and gene mapping in cereals. Anhui Agricultural Sciences, 51, 1–6. (in Chinese)

Wickham H. 2016. ggplot2: Elegant graphics for data analysis. Journal of the Royal Statistical Society, 174, 245–246.

Wu J, Yang X, Wang H, Li H, Li L, Li X, Liu W. 2006. The introgression of chromosome 6P specifying for increased numbers of florets and kernels from Agropyron cristatum to wheat. Theoretical and Applied Genetics, 114, 13–20.

Xu P, Zhang Z B, Zhang J P, Li F R. 2022. Gene Discovery and germplasm resources breeding and utilization of color wheat. Journal of Plant Genetic Resources, 23, 1549–1571.

Xu S R, Jiang B, Han H M, Ji X J, Zhang J P, Zhou S H, Yang X M, Li X Q, Li L H, Liu W H. 2023. Genetic effects of Agropyron cristatum 2P chromosome translocation fragments in wheat background. Journal of Integrative Agriculture, 22, 5262.

Yang G H, Yang X M, Wang R H, Gao A N, Li L H, Liu W H. 2010. The inhibiting effect of 1.4 recombinant P chromosome of wheat–Agropyron cristatum addition line on the Ph gene. Science Bulletin, 55, 153–157.

Ying K, Meng T Q, Gao W N, Yu Y H, Tian H Z, Wu J, Zhang Z M, Liu Y X. 2025. Comprehensive evaluation of main agronomic traits and nutritional quality of colored wheat germplasms. Journal of Triticeae Crops, 45, 337–348. (in Chinese)

Yu L L, Beta T. 2015. Identification and antioxidant properties of phenolic compounds during production of bread from purple wheat grains. Molecules, 20, 15525–15549.

Zeven A C. 1991. Wheats with purple and blue grains: A review. Euphytica, 56, 243–258.

Zhao X, Guo Y, Kang L, Yin C, Bi A, Xu D, Zhang Z, Zhang J, Yang X, Xu J, Xu S, Song X, Zhang M, Li Y, Kear P, Wang J, Liu Z, Fu X, Lu F. 2023. Population genomics unravels the Holocene history of bread wheat and its relatives. Nature Plants, 9, 403–419.

Zhang J, Zhang J P, Liu W H, Han H M, Lu Y Q, Yang X M, Li X Q, Li L H. 2015. Introgression of Agropyron cristatum 6P chromosome segment into common wheat for enhanced thousand-grain weight and spike length. Theoretical and Applied Genetics, 128, 1827–1837.

Zhang J, Zhang J P, Liu W H, Wu X Y, Yang X M, Li X Q, Lu Y Q, Li L H. 2016. An intercalary translocation from Agropyron cristatum 6P chromosome into common wheat confers enhanced kernel number per spike. Planta, 244, 853–864.

Zhang Q. 2021. Purple tomatoes, black rice and food security. Nature Reviews Genetics, 22, 414.

Zhang Z, Han H M, Liu W H, Song L Q, Zhang J P, Zhou S H, Yang X M, Li X Q, Li L H. 2019. Deletion mapping and verification of an enhanced-grain number per spike locus from the 6PL chromosome arm of Agropyron cristatum in common wheat. Theoretical and Applied Genetics, 132, 2815–2827.

Zhang Z, Song L Q, Han H M, Zhou S H, Zhang J P, Yang X M, Li X Q, Liu W H, Li L H. 2017. Physical localization of a locus from Agropyron cristatum conferring resistance to stripe rust in common wheat. International Journal of Molecular Sciences, 18, 2403.

Zhang Z, Zhou S H, Liu W H, Song L Q, Zhang J P, Han H M, Yang X M, Lin Y D, Li Q C, Li L H. 2021. Molecular cytogenetic analysis of the introgression between Agropyron cristatum P genome and wheat genome. International Journal of Molecular Sciences, 22, 11208.

Zhang Z B, Xu P, Li F L, Zhang W S, Li F R. 2024. Correlation of agronomic traits and micronutrient elements of colored wheat. Chinese Journal of Eco-Agriculture, 32, 1669–1678.

Zheng Q, Li B, Zhang X Y, Mu S M, Zhou H P, Li Z S. 2006. Physical mapping of the blue-grained gene from Thinopyrum ponticum by GISH and FISH in a set of translocation lines with different seed colors in wheat. Genome, 49, 1109–1114.

Zhu T, Wang L, Rimbert H, Rodriguez J C, Deal K R, De Oliveira R, Choulet F, Keeble-Gagnère G, Tibbits J, Rogers J, Eversole K, Appels R, Gu Y Q, Mascher M, Dvorak J, Luo M C. 2021. Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly. The Plant Journal, 107, 303–314.

Zhu Z X, Zhang Y L, Jia J, Li W L, Zhao L D, Meng F G, Gai H M, Xu X X, Zhao C X. 2023. Analysis of dry matter accumulation and yield formation of different color wheat varieties (lines). Journal of North China Agriculture, 38, 128–138. (in Chinese)

Zhou S H, Zhang J P, Che Y H, Liu W H, Lu Y Q, Yang X M, Li Q C, Jia J Z, Liu X, Li L H. 2018. Construction of Agropyron Gaertn. genetic linkage maps using a wheat 660K SNP array reveals a homoeologous relationship with the wheat genome. Plant Biotechnology Journal, 16, 818–827.

Zong X F. 2006. Study on the growth characteristics, grain nutrient and antioxidation of black wheat (T. aestivum L.). Ph D thesis, Southwest University, China. (in Chinese)

Zong X F, Yan R, Li B X, Wang S G. 2017. Dynamic changes of pigments and related enzymes in blue- and purple-grained wheat kernels. Journal of Southwest University (Natural Science Edition), 39, 1–7. (in Chinese)

Zong Y, Li G, Xi X, Sun X, Li S, Cao D, Zhang H, Liu B. 2019. A bHLH transcription factor TsMYC2 is associated with the blue grain character in triticale (Triticum × Secale). Plant Cell Reports, 38, 1291–1298.

No related articles found!
No Suggested Reading articles found!