|
Antony E, Taybi T, Courbot M, Mugford S T, Smith J A, Borland A M. 2008. Cloning, localization and expression analysis of vacuolar sugar transporters in the CAM plant Ananas comosus (pineapple). Journal of Experimental Botany, 59, 1895–1908.
Breia R, Conde A, Conde C, Fortes A M, Granell A, Gerós H. 2020. VvERD6l13 is a grapevine sucrose transporter highly up-regulated in response to infection by Botrytis cinerea and Erysiphe necator. Plant Physiology and Biochemistry, 154, 508–516.
Çakir B, Giachino R R. 2012. VvTMT2 encodes a putative tonoplast monosaccharide transporter expressed during grape berry (Vitis vinifera cv. Sultanine) ripening. Plant Omics Journal, 5: 576–583.
Carter C, Pan S, Zouhar J, Avila E L, Girke T, Raikhel N V. 2004. The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell, 16, 3285–3303.
Cheng J, Wen S, Xiao S, Lu B, Ma M, Bie Z. 2018. Overexpression of the tonoplast sugar transporter CmTST2 in melon fruit increases sugar accumulation. Journal of Experimental Botany, 69, 511–523.
Endler A, Meyer S, Schelbert S, Schneider T, Weschke W, Peters S W, Keller F, Baginsky S, Martinoia E, Schmidt U G. 2006. Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach. Plant Physiology, 141, 196–207.
Farré E M, Tiessen A, Roessner U, Geigenberger P, Trethewey R N, Willmitzer L. 2001. Analysis of the compartmentation of glycolytic intermediates, nucleotides, sugars, organic acids, amino acids, and sugar alcohols in potato tubers using a nonaqueous fractionation method. Plant Physiology, 127, 685–700.
Feng G, Wu J, Xu Y, Lu L, Yi H. 2021. High-spatiotemporal-resolution transcriptomes provide insights into fruit development and ripening in Citrus sinensis. Plant Biotechnology Journal, 19, 1337–1353.
Fontes N, Gerós H, Delrot S. 2010. Grape Berry Vacuole: A Complex and Heterogeneous Membrane System Specialized in the Accumulation of Solutes. American Journal of Enology and Viticulture,63, 270–278.
Hu B, Huang W, Dong L, Liu S, Zhou Y. 2019. Molecular cloning and functional analysis of a sugar transporter gene (CsTST2) from cucumber (Cucumis sativus L.). Biotechnology & Biotechnological Equipment, 33, 118–127.
Jaquinod M, Villiers F, Kieffer-Jaquinod S, Hugouvieux V, Bruley C, Garin J, Bourguignon J. 2007. A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture. Molecular & Cellular Proteomics, 6, 394–412.
Jones P, Binns D, Chang H Y, Fraser M, Li W, McAnulla C, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn A F, Sangrador-Vegas A, Scheremetjew M, Yong S Y, Lopez R, Hunter S. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics, 30, 1236–1240.
Juan J X, Yu X H, Jiang X M, Gao Z, Zhang Y, Li W, Duan Y D, Yang G. 2015. Agrobacterium-mediated transformation of tomato with the ICE1 transcription factor gene. Genetics and Molecular Research, 14, 597–608.
Jung B, Ludewig F, Schulz A, Meißner G, Wöstefeld N, Flügge UI, Pommerrenig B, Wirsching P, Sauer N, Koch W, Sommer F, Mühlhaus T, Schroda M, Cuin TA, Graus D, Marten I, Hedrich R, Neuhaus HE. 2015. Identification of the transporter responsible for sucrose accumulation in sugar beet taproots. Nature Plants, 1, 14001.
Khan A, Cheng J, Kitashova A, Fürtauer L, Nägele T, Picco C, Scholz-Starke J, Keller I, Neuhaus H E, Pommerrenig, B. 2023. Vacuolar sugar transporter EARLY RESPONSE TO DEHYDRATION6-LIKE4 affects fructose signaling and plant growth. Plant Physiology, 193, 2141–2163.
Kim D S, Lee S, Park S M, Yun S H, Gab H S, Kim S S, Kim H J. 2021. Comparative metabolomics analysis of citrus varieties. Foods, 10, 2826.
Klemens P A W, Patzke K, Trentmann O, Poschet G, Büttner M, Schulz A, Marten I, Hedrich R, Neuhaus H E. 2014. Overexpression of a proton-coupled vacuolar glucose exporter impairs freezing tolerance and seed germination. The New Phytologist, 202, 188–197.
Ku Y S. 2023. How sweet! Transcription factor CitZAT5 regulates CitSUS5 and CitSWEET6 to promote sugar accumulation in citrus fruit. Plant Physiology, 192, 1669–1670.
Kuang L, Chen S, Guo Y, Ma H. 2019. Quantitative proteome analysis reveals changes in the protein landscape during grape berry development with a focus on vacuolar transport proteins. Frontiers in Plant Science, 10, 641.
Kuang L, Chen S, Guo Y, Scheuring D, Flaishman M A, Ma H. 2022. Proteome analysis of vacuoles isolated from fig (Ficus carica L.) flesh during fruit development. Plant & Cell Physiology, 63, 785–801.
Lado J, Gambetta G, Zacarias L. 2018. Key determinants of citrus fruit quality: Metabolites and main changes during maturation. Scientia Horticulturae, 233, 238–248.
Li J M, Zheng D M, Li L T, Qiao X, Wei S W, Bai B, Zhang S L, Wu J. 2015. Genome-wide function, evolutionary characterization and expression analysis of sugar transporter family genes in pear (Pyrus bretschneideri Rehd). Plant & Cell Physiology, 56, 1721–1737.
Li M, Mao Z, Zhao Z, Gao S, Luo Y, Liu Z, Sheng, X, Zhai X, Liu J H, Li C 2024. CBL1/CIPK23 phosphorylates tonoplast sugar transporter TST2 to enhance sugar accumulation in sweet orange (Citrus sinensis). Journal of Integrative Plant Biology, 67, 327–344.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods, 25, 402–408.
Lu X, Zhao C, Shi H, Liao Y, Xu F, Du H, Xiao H, Zheng J. 2023. Nutrients and bioactives in citrus fruits: Different citrus varieties, fruit parts, and growth stages. Critical Reviews in Food Science and Nutrition, 63, 2018–2041.
Mao Z, Wang Y, Li M, Zhang S, Zhao Z, Xu Q, Liu J H, Li C. 2023. Vacuolar proteomic analysis reveals tonoplast transporters for accumulation of citric acid and sugar in citrus fruit. Horticulture Research, 11, uhad249.
Martinoia E, Meyer S, De Angeli A, Nagy R. 2012. Vacuolar transporters in their physiological context. Annual Review of Plant Biology, 63, 183–213.
Martinoia E, Mimura T, Hara-Nishimura I, Shiratake K. 2018. The multifaceted roles of plant vacuoles. Plant & Cell Physiology, 59, 1285–1287.
Moskowitz A H, Hrazdina G. 1981. Vacuolar contents of fruit subepidermal cells from Vitis species. Plant Physiology, 68, 686–692.
Ohnishi M, Anegawa A, Sugiyama Y, Harada K, Oikawa A, Nakayama Y, Sasaki R, Shichijo C, Hatcher P G, Fukaki H, Kanaya S, Aoki K, Yamazaki M, Fukusaki, E, Saito K, Mimura T. 2018. Molecular components of Arabidopsis intact vacuoles clarified with metabolomic and proteomic analyses. Plant & Cell Physiology, 59, 1353–1362.
Oikawa A, Matsuda F, Kikuyama M, Mimura T, Saito K. 2011. Metabolomics of a single vacuole reveals metabolic dynamism in an alga Chara australis. Plant Physiology, 157, 544–551.
Poschet G, Hannich B, Raab S, Jungkunz I, Klemens P A, Krueger S, Wic S, Neuhaus H E, Büttner M. 2011. A novel Arabidopsis vacuolar glucose exporter is involved in cellular sugar homeostasis and affects the composition of seed storage compounds. Plant Physiology, 157, 1664–1676.
Ranganna S, Govindarajan V S, Ramana K V. 1983. Citrus fruits - varieties, chemistry, technology, and quality evaluation. Part II. Chemistry, technology, and quality evaluation. A. Chemistry. Critical Reviews in Food Science and Nutrition, 18, 313–386.
Ren Y, Guo S, Zhang J, He H, Sun H, Tian S, Gong G, Zhang H, Levi A, Tadmor Y, Xu Y. 2018. A tonoplast sugar transporter underlies a sugar accumulation QTL in watermelon. Plant Physiology, 176, 836–850.
Reuscher S, Akiyama M, Mori C, Aoki K, Shibata D, Shiratake K. 2013. Genome-wide identification and expression analysis of aquaporins in tomato. PLoS One, 8, e79052.
Saini R K, Ranjit A, Sharma K, Prasad P, Shang X, Gowda K G M, Keum Y S. 2022. Bioactive compounds of citrus fruits: A review of composition and health benefits of carotenoids, flavonoids, limonoids, and terpenes. Antioxidants, 11, 239.
Salvino R A, Colella M F, Luca G D. 2021. NMR-based metabolomics analysis of Calabrian citrus fruit juices and its application to industrial process quality control. Food Control, 121, 107619.
Schmidt U G, Endler A, Schelbert S, Brunner A, Schnell M, Neuhaus H E, Marty-Mazars D, Marty F, Baginsky S, Martinoia E. 2007. Novel tonoplast transporters identified using a proteomic approach with vacuoles isolated from cauliflower buds. Plant Physiology, 145, 216–229.
Schulz A, Beyhl D, Marten I, Wormit A, Neuhaus E, Poschet G, Büttner M, Schneider S, Sauer N, Hedrich R. 2011. Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2. The Plant Journal, 68, 129–136.
Schulze W X, Schneider T, Starck S, Martinoia E, Trentmann O. 2012. Cold acclimation induces changes in Arabidopsis tonoplast protein abundance and activity and alters phosphorylation of tonoplast monosaccharide transporters. The Plant Journal, 69, 529–541.
Shiratake K, Martinoia E. 2007. Transporters in fruit vacuoles. Plant Biotechnology, 24, 127–133.
Shitan N, Yazaki K. 2013. New insights into the transport mechanisms in plant vacuoles. International Review of Cell and Molecular Biology, 305, 383–433.
Tadeo F R, Cercos M, Colmenero-Flores J M, Iglesias D J, Naranjo M A, Rios G, Carrera E, Ruiz-rivero O, Lliso I, Morillon R, Ollitrault P, Talon M. 2008. Molecular physiology of development and quality of citrus. Advances in Botanical Research, 47, 147–223.
Timm S, Eisenhut M. 2023. Four plus one: vacuoles serve in photorespiration. Trends in Plant Science, 28, 1340–1343.
Tohge T, Ramos M S, Nunes-Nesi A, Mutwil M, Giavalisco P, Steinhauser D, Schellenberg M, Willmitzer L, Persson S, Martinoia E, Fernie A R. 2011. Toward the storage metabolome: profiling the barley vacuole. Plant Physiology, 157, 1469–1482.
Towbin H, Staehelin T, Gordon J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences of the United States of America, 76, 4350–4354.
Wang S, Shen S, Wang C, Wang X, Yang C, Zhou S, Zhang R, Zhou Q, Yu H, Guo H, Zheng W, Liu X, Xu J, Deng X, Xu Q, Luo J. 2023. A metabolomics study in citrus provides insight into bioactive phenylpropanoid metabolism. Horticulture Research, 11, uhad267.
Wen B, Mei Z, Zeng C, Liu S. 2017. metaX: a flexible and comprehensive software for processing metabolomics data. BMC Bioinformatics, 18, 183.
Wiśniewski J R, Zougman A, Nagaraj N, Mann M. 2009. Universal sample preparation method for proteome analysis. Nature Methods, 6, 359–362.
Wormit A, Trentmann O, Feifer I, Lohr C, Tjaden J, Meyer S, Schmidt U, Martinoia E, Neuhaus H E. 2006. Molecular identification and physiological characterization of a novel monosaccharide transporter from Arabidopsis involved in vacuolar sugar transport. Plant Cell, 18, 3476–3490.
Wu G A, Sugimoto C, Kinjo H, Azama C, Mitsube F, Talon M, Gmitter F G J, Rokhsar D S. 2021. Diversification of mandarin citrus by hybrid speciation and apomixis. Nature Communications, 12, 4377.
Yamaki S. 2010. Metabolism and accumulation of sugars translocated to fruit and their regulation. Journal of the Japanese Society for Horticultural Science, 79, 1–15.
Yoshida K, Ohnishi M, Fukao Y, Okazaki Y, Fujiwara M, Song C, Nakanishi Y, Saito K, Shimmen T, Suzaki T, Hayashi F, Fukaki H, Maeshima M, Mimura T. 2013. Studies on vacuolar membrane microdomains isolated from Arabidopsis suspension-cultured cells: local distribution of vacuolar membrane proteins. Plant & Cell Physiology, 54: 1571–1584.
Zhu L, Li B, Wu L, Li H, Wang Z, Wei X, Ma B, Zhang Y, Ma F, Ruan Y L, Li, M. 2021. MdERDL6-mediated glucose efflux to the cytosol promotes sugar accumulation in the vacuole through up-regulating TSTs in apple and tomato. Proceedings of the National Academy of Sciences of the United States of America, 118, e2022788118.
Zhu L, Lan J, Zhao T, Li M, Ruan Y L. 2025. How vacuolar sugar transporters evolve and control cellular sugar homeostasis, organ development and crop yield. Nature plants, 11, 1102–1115.
|