Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Proton-responsive SlSTOP1-SlFRDL1 regulatory pathway modulates citrate-driven iron acquisition in tomato roots

Huihui Zhu1*, Liqiong Jia1*, Yuzhi Bai1, Junqiang Xu1, Xulu Luo1, Wei Fan1, Weiwei Chen2#, Jianli Yang1#

1Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China

2 College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China

 Highlights 

l Iron deficiency induces organic acids and proton exudation to solubilize sparingly available iron

l Citric acid exhibits superior iron solubilization efficacy at weakly acidic pH

l SlFRDL1 contributes to iron deficiency-induced citric acid exudation

l SlSTOP1 binds to the promoter of SlFRDL1 to activate its transcription

l SlSTOP1-SlFRDL1 regulatory pathway is active in acidic pH but inactive in alkaline pH

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

在根际铁活化过程中,环境pH条件对根系分泌物的组成与功能具有决定性影响。尽管有机酸在铁溶解过程中的作用已得到广泛证实,但其pH依赖性的分子调控机制仍存在认知空白。本研究揭示了弱酸性环境(pH 5.0-6.0)下根系铁活化的新机制。研究发现,在该pH范围内,根系分泌的质子单独作用难以有效溶解难溶性铁,必须依赖pH敏感的有机配体协同作用。比较分析显示,柠檬酸相较于草酸和苹果酸具有显著更高的铁溶解效率。分子机制研究表明,质膜定位的柠檬酸转运蛋白SlFRDL1是这一过程的关键执行者。缺铁胁迫显著诱导SlFRDL1基因表达,其敲除突变体Slfrdl1因柠檬酸分泌缺陷而表现出加重的缺铁黄化表型。进一步研究发现,转录因子SlSTOP1通过特异性结合SlFRDL1启动子区域来激活其表达。遗传证据显示,Slstop1突变体与Slfrdl1突变体具有高度相似的缺铁敏感表型,证实二者在功能上存在协同关系。特别值得注意的是,与FER介导的广谱pH适应型铁吸收系统不同,SlSTOP1-SlFRDL1模块表现出严格的pH依赖性调控特征——仅在酸性条件下被缺铁信号特异性激活。这一发现不仅阐明了酸性土壤中铁活化的分子基础,也为作物适应不同pH环境的铁营养调控机制提供了新的理论依据。



Abstract  

The composition and function of root exudates in rhizosphere iron (Fe) mobilization are significantly influenced by environmental pH conditions. While the role of organic acids in Fe solubilization is well-recognized, the molecular mechanisms underlying this pH-dependent process remain poorly understood. Here, we demonstrate that under weakly acidic conditions, proton excretion alone is insufficient to solubilize sparingly soluble Fe. Instead, a pH-dependent ligand specificity emerges as a critical factor in Fe mobilization. Notably, within the pH range of 5.0-6.0, citric acid exuded by roots exhibits superior Fe solubilization efficacy compared to oxalic acid and malic acid. We identified SlFRDL1, a gene induced by Fe deficiency, as a key player in this process. SlFRDL1 encodes a plasma membrane-localized protein with citrate permeability, as confirmed by its functional expression in Xenopus oocytes. Knockout mutants of SlFRDL1 displayed exacerbated Fe deficiency symptoms, which were associated with a significant reduction in citrate secretion from roots. Furthermore, we discovered that SlSTOP1, a transcription factor, binds to the promoter region of SlFRDL1 and activates its expression. Slstop1 mutants exhibited leaf chlorosis symptoms similar to those observed in Slfrdl1 mutants, highlighting the functional interplay between these two genes. Interestingly, while Fe deficiency triggers the FER-mediated Fe uptake system across both acidic and alkaline conditions, the SlSTOP1-SlFRDL1 module is specifically activated only in acidic environments. This pH-specific regulation underscores the importance of the SlSTOP1-SlFRDL1 pathway in root-mediated Fe solubilization under acidic conditions. 

Keywords:  citrate exudation       iron (Fe) mobilization       pH       SlFRDL1       SlSTOP1  
Online: 31 December 2025  
Fund: 

This work was financially supported by the Joint Agricultural Project of Department of Science and Technology of Yunnan Province (202401BD070001-010), and the National Natural Science Foundation of China (No. 32372803). the Science and Technology Major Project of the Yunnan Province Science and Technology Department (no. 202502AE090025 to J. Y.).

About author:  Correspondence Jianli Yang, E-mail: yangjianli@zju.edu.cn; Weiwei Chen, E-mail: 15858223807@163.com

Cite this article: 

Huihui Zhu, Liqiong Jia, Yuzhi Bai, Junqiang Xu, Xulu Luo, Wei Fan, Weiwei Chen, Jianli Yang. 2025. Proton-responsive SlSTOP1-SlFRDL1 regulatory pathway modulates citrate-driven iron acquisition in tomato roots. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.12.072

Awad F, Romheld V, Marschner H. 1994. Effect of root exudates on mobilization in the rhizosphere and uptake from by wheat plants. Plant and Soil, 165, 213-218.

Balzergue C, Dartevelle T, Godon C, Laugier E, Meisrimler C, Teulon J M, Creff A, Bissler M, Brouchoud C, Hagege A, Muller J, Chiarenza S, Javot H, Becuwe-Linka N, David P, Peret B, Delannoy E, Thibaud M -C, Armengaud J, Abel S, Pellequer J -L, Nussaume L, Desnos T. 2017. Low phosphate activates STOP1-ALMT1 to rapidly inhibit root cell elongation. Nature Communications, 8, 15300.

Briat J F, Dubos C, Gaymard F. 2015. Iron nutrition, biomass production, and plant product quality. Trends in Plant Science, 20, 33-40.

Chen Y T, Wang Y, Yeh K C. 2017. Role of root exudates in metal acquisition and tolerance. Current Opinion in Plant Biology, 39, 66-72.

ChenW W, Zhu H H, Wang J Y, Han G H, Huang R N, Hong Y G, Yang J L. 2022. Comparative physiological and transcriptomic analyses reveal altered Fe-deficiency responses in tomato epimutant Colorless Non-ripening. Frontiers in Plant Science, 12, 796893.

Ding Z J, Xu C, Yan J Y, Wang Y X, Cui M Q, Yuan J J, Wang Y N, Li G X, Wu J X, Wu Y R, Xu J M, Li C X, Shi Y Z, Mao C Z, Guo J T, Zhou J M, Benhamed M, Harberd N P, Zheng S J. 2024. The LRR receptor-like kinase ALR1 is a plant aluminum ion sensor. Cell Research, 34, 281-294.

Durrett T P, Gassmann W, Rogers E E. 2007. The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiology, 144, 197-205.

Fan W, Lou H Q, Gong Y L, Liu M Y, Cao M J, Liu Y, Yang J L, Zheng S J. 2015. Characterization of an inducible C2H2-type zinc finger transcription factor VuSTOP1 in rice bean (Vigna umbellata) reveals differential regulation between low pH and aluminum tolerance mechanisms. New Phytologist, 208, 456-468.

Fujii M, Yokosho K, Yamaji N, Saisho D, Yamane M, Takahashi H, Sato K, Nakazono M, Ma J F. 2012. Acquisition of aluminium tolerance by modification of a single gene in barley. Nature Communications, 3, 713.

Gautam C K, Tsai H H, Schmidt W. 2021. IRONMAN tunes responses to iron deficiency in concert with environmental pH. Plant Physiology, 187, 1728-1745.

Godon C, Mercier C, Wang X, David P, Richaud P, Nussaume L, Liu D, Desnos T. 2019. Under phosphate starvation conditions, Fe and Al trigger accumulation of the transcription factor STOP1 in the nucleus of Arabidopsis root cells. The Plant Journal, 99, 937-949.

Green L S, Rogers E E. 2004. FRD3 controls iron localization in Arabidopsis. Plant Physiology, 136, 2523-2531.

Huang C F, Ma Y. 2024. Aluminum resistance in plants: A critical review focusing on STOP1. Plant Communications, 6, 101200.

IuchiS, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, Kobayashi Y, Ikka T, Hirayama T, Shinozaki K, Kobayashi M. 2007.  Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance, Proceedings of the National Academy of Sciences U S A, 104, 9900-9905.

Jin C W, Du S T, Shamsi I H, Luo B F, Lin X Y. 2011. NO synthase-generated NO acts downstream of auxin in regulating Fe-deficiency-induced root branching that enhances Fe-deficiency tolerance in tomato plants. Journal of Experimental Botany, 62, 3875-3884.

Jin C W, You G Y, He Y F, Tang C, Wu P, Zheng S J. 2007. Iron deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover. Plant Physiology, 144, 278-285.

Jin J F, Zhu H H, He Q Y, Li P F, Fan W, Xu J M, Yang J L, Chen W W. 2022. The tomato transcription factor SlNAC063 is required for aluminum tolerance by regulating SlAAE3-1 expression. Frontiers in Plant Science, 13, 826954.

JonesD L, Darrah P R, Kochian L V. 1996. Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake. Plant and Soil, 180, 57-66.

Kobayashi T, Nishizawa N K. 2012. Iron uptake, translocation, and regulation in higher plants. Annuanl Review of Plant Biology, 63, 131-152.

Le Poder L, Mercier C, Fevrier L, Duong N, David P, Pluchon S, Nussaume L, Desnos T. 2022. Uncoupling aluminum toxicity from aluminum signals in the STOP1 pathway. Fronties in Plant Science, 13, 785791.

Liang G. 2022. Iron uptake, signaling, and sensing in plants. Plant Communications, 3, 100349.

Liu G, Chen Q, Li D, Mai H, Zhou Y, Lin M, Feng X, Lin X, Lu X, Chen K, Tian J, Liang C. 2025. GmSTOP1-3 increases soybean manganese accumulation under phosphorus deficiency by regulating GmMATE2/13 and GmZIP6/GmIREG3, Plant Cell and Environment, 48, 1812-1828.

Liu J, Liu J, Chen A, Ji M, Chen J, Yang X, Gu M, Qu H, Xu G. 2016. Analysis of tomato plasma membrane H+-ATPase gene family suggests a mycorrhiza-mediated regulatory mechanism conserved in diverse plant species. Mycorrhiza, 26, 645–656.

Liu J P, Magalhaes J V, Shaff J, Kochian L V. 2009. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. The Plant Journal, 57, 389-399.

LiuM Y, Lou H Q, Chen W W, Pineros M A, Xu J M, Fan W, Kochian L V, Zheng S J, Yang J L. 2018. Two citrate transporters coordinately regulate citrate secretion from rice bean root tip under aluminum stress. Plant Cell and Environment, 41, 809-822.

Lucena C, Romera F  J, Rojas C L, Garcia M, Alcantara E, Perez-Vicente R.  2007. Bicarbonate blocks the expression of several genes involved in the physiological responses to Fe deficiency of Strategy I plants. Functional Plant Biology, 34, 1002-1009.

Mori S. 1999. Iron acquisition by plants. Current Opinion in Plant Biology, 2, 250-253.

Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa N K. 2011. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. Journal of Biological Chemistry, 286, 5446-5454.

Oburger E, Gruber B, Schindlegger Y, Schenkeveld W D C, Hann S, Kraemer S M, Wenzel W W, Puschenreiter M. 2014. Root exudation of phytosiderophores from soil-grown wheat. New Phytologist, 203, 1161-1174.

Piñeros M A, Cancado G M, Kochian L V. 2008. Novel properties of the wheat aluminum tolerance organic acid transporter (TaALMT1) revealed by electrophysiological characterization in Xenopus oocytes: Functional and structural implications. Plant Physiology, 147, 2131–2146.

Rajniak J, Giehl R F H, Chang E, Murgia I, von Wiren N, Sattely E S. 2018. Biosynthesis of redox-active metabolites in response to iron deficiency in plants. Nature Chemical Biology, 14, 442-450.

Riaz N, Guerinot M L. 2021. All together now: regulation of the iron deficiency response. Journal of Experimental Botany, 72, 2045-2055.

Rogers E E, Wu X, Stacey G, Nguyen H T. 2009. Two MATE proteins play a role in iron efficiency in soybean. Journal of Plant Physiology, 166, 1453-1459.

Römheld V, Marschner H. 1986. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiology, 80, 175-180.

Rosenkranz T, Oburger E, Baune M, Weber G, Puschenreiter M. 2021. Root exudation of coumarins from soil-grown Arabidopsis thaliana in response to iron deficiency. Rhizosphere, 17, 100296.

Ryan P R, Yang J. 2024. Sensing the toxic aluminum cations in acidic soils, Cell Research, 34, 269-270.

Santi S, Schmidt W. 2009. Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytologist, 183, 1072-1084.

SawakiY, Iuchi S, Kobayashi Y, Kobayashi Y, Ikka T, Sakurai N, Fujita M, Shinozaki K, Shibata D, Kobayashi M, Koyama H. 2009. STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant Physiology, 150, 281-294.

Schmid N B, Giehl R F H, Doell S, Mock H -P, Strehmel N, Scheel D, Kong X, Hider R C, von Wiren N. 2014. Feruloyl-coA 6′-hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis. Plant Physiology, 164, 160-172.

Susin S, Abadia A, Gonzalez-Reyes J A, Lucena J J, Abadia J.1996. The pH requirement for in vivo activity of the iron deficiency-induced ''Turbo'' ferric chelate reductase - A comparison of the iron-deficiency-induced iron reductase activities of intact plants and isolated plasma membrane fractions in sugar beet. Plant Physiology, 110, 111-123.

Tian W H, Ye J Y, Cui M Q, Chang J B, Liu Y, Li G X, Wu Y R, Xu J M, Harberd N P, Mao C Z, Jin C W, Ding Z J, Zheng S J. 2021. A transcription factor STOP1-centered pathway coordinates ammonium and phosphate acquisition in Arabidopsis. Molecular Plant, 14, 1554-1568.

Tsai H -H, Rodriguez-Celma J, Lan P, Wu Y C, Velez-Bermudez I C, Schmidt W. 2018. Scopoletin 8-hydroxylase-mediated fraxetin production is crucial for iron mobilization. Plant Physiology, 177, 194-207.

Tsutsui T, Yamaji N, Ma J F. 2011. Identification of a cis-acting element of ART1, a C2H2-type zinc-finger transcription factor for aluminum tolerance in rice. Plant Physiology, 156, 925-931.

Waters B M, Amundsen K, Graef G. 2018. Gene expression profiling of iron deficiency chlorosis sensitive and tolerant soybean indicates key roles for phenylpropanoids under alkalinity stress. Frontiers in Plant Science, 9, 10.

Yang X Y, Yang J L, Zhou Y, Piñeros M A, Kochian L V, Li G X, Zheng S J. 2011. A de novo synthesis citrate transporter, Vigna umbellata multidrug and toxic compound extrusion, implicates in Al-activated citrate efflux in rice bean (Vigna umbellata) root apex. Plant Cell and Environment, 34, 2138–2148.

YangJ L, Fan W, Zheng S J. 2019. Mechanisms and regulation of aluminum-induced secretion of organic acid anions from plant roots. Journal of Zhejiang University-SCIENCE B, 20, 513-527.

Ye J Y, Tian W H, Zhou M, Zhu Q Y, Du W X, Zhu Y X, Liu X X, Lin X Y, Zheng S J, Jin C W. 2021. STOP1 activates NRT1.1-mediated nitrate uptake to create a favorable rhizospheric pH for plant adaptation to acidity. The Plant Cell, 33, 3658-3674.

Yokosho K, Yamaji N, Fujii-Kashino M, Ma J F. 2016. Retrotransposon-mediated aluminum tolerance through enhanced expression of the citrate transporter OsFRDL4. Plant Physiology, 172, 2327-2336.

Zhang Y, Zhang J, Guo J L, Zhou F L, Singh S, Xu X, Xie Q, Yang Z B, Huang C F. 2019. F-box protein RAE1 regulates the stability of the aluminum-resistance transcription factor STOP1 in Arabidopsis. Proceedings of the National Academy of Sciences U S A, 116, 319-327.

Zhu H H, Han G H, Wang J Y, Xu J M, Hong Y G, Huang L, Zheng S J, Yang J L, Chen W W. 2023. CG hypermethylation of the bHLH39 promoter regulates its expression and Fe deficiency responses in tomato roots. Horticulture Research, 10, uhad104.

Zhu H H, Wang J Y, Jiang D, Hong Y G, Xu J M, Zheng S J, Yang J L, Chen W W. 2022. The miR157-SPL-CNR module acts upstream of bHLH101 to negatively regulate iron deficiency responses in tomato. Journal of Integrative Plant Biology, 64, 1059-1075.

Zhu H, Chen W, Yang Z a, Zeng C, Fan W, Yang J. 2024. SlSTOP1-regulated SlHAK5 expression confers Al tolerance in tomato by facilitating citrate secretion from roots. Horticulture Research, 11, uhae282.

Zhu H, Wang J, Huang R N, Yang Z, Fan W, Huang L, Yang J, Chen W. 2024. Epigenetic modification of a pectin methylesterase gene activates apoplastic iron reutilization in tomato roots. Plant Physiology, 195, 2339-2353.

No related articles found!
No Suggested Reading articles found!