Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
BrRRG affects leaf size by regulating cell cycle gene expression in Chinese cabbag

Qianyun Wang1, Rui Yang1, Daling Feng1, Yongcheng Li1, Rui Li1, Mengyang Liu1, Yiguo Hong1, Na Li2#, Wei Ma1#, Jianjun Zhao1#

1 State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China

School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China.

 Hightlights 

1. RETARDED ROOT GROWTHBrRRGis  the gene responsible for defective leaf and root development in the mini24 mutant.

2. Identification of BrRRG as a key regulator controlling leaf size via E2Fa and cell-cycle genes in Chinese cabbage.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

大白菜(Brassica rapa subsp. pekinensis)是十字花科芸苔属的一种叶菜类蔬菜。可食用叶片的大小决定其经济价值和营养价值。然而,目前对大白菜叶片发育的认识有限。本研究通过对大白菜叶片发育缺陷突变体mini24的正向遗传分析,我们确定了调控大白菜叶片细胞分裂的BrRRG基因。进一步证明了BrRRG通过调控E2Fa转录因子和细胞周期相关基因的表达来影响白菜的叶片大小。此外,我们还发现BrRRG影响大白菜的生长素和细胞分裂素信号的响应。本研究揭示了BrRRG对地下部(根)和地上部(叶)发育调节的不同机制,BrRRG对大白菜叶片的生长至关重要。



Abstract  

Chinese cabbage (Brassica rapa subsp. pekinensis) is a significant leafy vegetable in the Brassica genus of the Brassicaceae family. The size of edible leaves is an essential trait that determines its economic and nutritional values. However, current understanding of leaf development in Chinese cabbage is limited. Here, through forward genetic analyses of the mutant mini24 with defective leaf and root development, we identified the BrRRG gene, which regulates cell division in Chinese cabbage by map-based cloning. We demonstrated that BrRRG impacts leaf size by regulating the expression of E2Fa transcription factors and cell cycle-related genes in Chinese cabbage. Furthermore, BrRRG was found to modulates Chinese cabbage responds to IAA hormones and cytokinins, revealing distinct regulatory mechanisms by which BrRRG controls underground root and aboveground leaf development. Thus, these results suggest that BrRRG mutant causes damage to plant growth and development in Chinese cabbage.

Keywords:  Chinese cabbage       BrRRG       cell division       cell cycle gene  
Online: 31 December 2025  
Fund: 

This work was supported by the National Natural Science Foundation of China (Grant Nos. 32172594, 32330096, 32222076), the Innovative Research Group Project of Hebei Natural Science Foundation (Grant No. C2024204246).

About author:  Qianyun Wang, E-mail: 1727374001@qq.com; #Correspondence Jianjun Zhao, E-mail: yyzjj@hebau.edu.cn; Na Li, E-mail: 13521251421@163.com; Wei Ma, E-mail: mawei0720@163.com

Cite this article: 

Qianyun Wang, Rui Yang, Daling Feng, Yongcheng Li, Rui Li, Mengyang Liu, Yiguo Hong, Na Li, Wei Ma, Jianjun Zhao. 2025. BrRRG affects leaf size by regulating cell cycle gene expression in Chinese cabbag. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.12.067

Aboul-Maaty N A-F, Oraby H A-S. 2019. Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Bulletin of the National Research Centre, 43, 25.

Andriankaja M, Dhondt S, De Bodt S, Vanhaeren H, Coppens F, De Milde L, Mühlenbock P, Skirycz A, Gonzalez N, Beemster G T, Inzé D. 2012. Exit from proliferation during leaf development in Arabidopsis thaliana: a not-so-gradual process. Developmental Cell, 22, 64-78.

Bogre L, Magyar Z, Lopez-Juez E. 2008. New clues to organ size control in plants. Genome Biology, 9, 226.

Breuer C, Ishida T, Sugimoto K. 2010. Developmental control of endocycles and cell growth in plants. Current Opinion in Plant Biology, 13, 654-660.

De Veylder L, Larkin J C, Schnittger A. 2011. Molecular control and function of endoreplication in development and physiology. Trends in Plant Science, 16, 624-634.

Dewitte W, Scofield S, Alcasabas A A, Maughan S C, Menges M, Braun N, Collins C, Nieuwland J, Prinsen E, Sundaresan V, Murray J A. 2007. Arabidopsis CYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses. Proceedings of the National Academy of Sciences of the United States of America, 104, 14537-14542.

Ding Q, Cui B, Li J, Li H, Zhang Y, Lv X, Qiu N, Liu L, Wang F, Gao J. 2018. Ectopic expression of a Brassica rapa AINTEGUMENTA gene (BrANT-1) increases organ size and stomatal density in Arabidopsis. Scientific Reports, 8, 10528.

Elliott R C, Betzner A S, Huttner E, Oakes M P, Tucker W Q, Gerentes D, Perez P, Smyth D R. 1996. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. The Plant Cell, 8, 155-168.

Fang W, Wang Z, Cui R, Li J, Li Y. 2012. Maternal control of seed size by EOD3/CYP78A6 in Arabidopsis thaliana. Plant Journal, 70, 929-939.

Gonzalez N, Vanhaeren H, Inze D. 2012. Leaf size control: complex coordination of cell division and expansion. Trends in Plant Science, 17, 332-340.

Gu A X, Zhao J J, Li L M, Wang Y H, Zhao Y J, Hua F, Xu Y C, Shen S X. 2016. Analyses of phenotype and ARGOS and ASY1 expression in a ploidy Chinese cabbage series derived from one haploid. Breeding Science, 66, 161-168.

Guo X, Liang J, Lin R, Zhang L, Wu J, Wang X. 2021. Series-Spatial Transcriptome Profiling of Leafy Head Reveals the Key Transition Leaves for Head Formation in Chinese Cabbage. Frontiers in Plant Science, 12, 787826.

Gutierrez C, Ramirez-Parra E, Castellano M M, del Pozo J C. 2002. G(1) to S transition: more than a cell cycle engine switch. Current Opinion in Plant Biology, 5, 480-486.

He S S, Liu J, Xie Z, O'Neill D, Dotson S. 2004. Arabidopsis E2Fa plays a bimodal role in regulating cell division and cell growth. Plant Molecular Biology, 56, 171-184.

Herridge R P, Day R C, Macknight R C. 2014. The role of the MCM2-7 helicase complex during Arabidopsis seed development. Plant Molecular Biology, 86, 69-84.

Hong J K, Oh S W, Kim J H, Lee S B, Lee Y H. 2017. Overexpression of Brassica rapa GROWTH-REGULATING FACTOR genes in Arabidopsis thaliana increases organ growth by enhancing cell proliferation. Journal of Plant Biotechnology, 44, 271-286.

Hong S Y, Kim O K, Kim S G, Yang M S, Park C M. 2011. Nuclear import and DNA binding of the ZHD5 transcription factor is modulated by a competitive peptide inhibitor in Arabidopsis. Journal of Biological Chemistry, 286, 1659-1668.

Hur Y S, Um J H, Kim S, Kim K, Park H J, Lim J S, Kim W Y, Jun S E, Yoon E K, Lim J, Ohme-Takagi M, Kim D, Park J, Kim G T, Cheon C I. 2015. Arabidopsis thaliana homeobox 12 (ATHB12), a homeodomain-leucine zipper protein, regulates leaf growth by promoting cell expansion and endoreduplication. New Phytologist, 205, 316-328.

Jeleńska J, Deckert J, Kondorosi E, Legocki A B. 2000. Mitotic B-type cyclins are differentially regulated by phytohormones and during yellow lupine nodule development. Plant Science, 150, 29-39.

John P C, Mews M, Moore R. 2001. Cyclin/Cdk complexes: their involvement in cell cycle progression and mitotic division. Protoplasma, 216, 119-142.

Johnson K, Lenhard M. 2011. Genetic control of plant organ growth. New Phytologist, 191, 319-333.

Kosugi S, Ohashi Y. 2003. Constitutive E2F expression in tobacco plants exhibits altered cell cycle control and morphological change in a cell type-specific manner. Plant Physiology, 132, 2012-2022.

Kwon S H, Lee B H, Kim E Y, Seo Y S, Lee S, Kim W T, Song J T, Kim J H. 2009. Overexpression of a Brassica rapa NGATHA gene in Arabidopsis thaliana negatively affects cell proliferation during lateral organ and root growth. Plant and Cell Physiology, 50, 2162-2173.

Lee B H, Ko J H, Lee S, Lee Y, Pak J H, Kim J H. 2009. The Arabidopsis GRF-INTERACTING FACTOR gene family performs an overlapping function in determining organ size as well as multiple developmental properties. Plant Physiology, 151, 655-668.

Limas J C, Cook J G. 2019. Preparation for DNA replication: the key to a successful S phase. FEBS Letters, 593, 2853-2867.

Lu D, Wang T, Persson S, Mueller-Roeber B, Schippers J H. 2014. Transcriptional control of ROS homeostasis by KUODA1 regulates cell expansion during leaf development. Nature Communications, 5, 3767.

Mironov V V, De Veylder L, Van Montagu M, Inze D. 1999. Cyclin-dependent kinases and cell division in plants the nexus. The Plant Cell, 11, 509-522.

Naouar N, Vandepoele K, Lammens T, Casneuf T, Zeller G, van Hummelen P, Weigel D, Rätsch G, Inzé D, Kuiper M, De Veylder L, Vuylsteke M. 2009. Quantitative RNA expression analysis with Affymetrix Tiling 1.0R arrays identifies new E2F target genes. Plant Journal, 57, 184-194.

Neelam K, Brown-Guedira G, Huang L. 2013. Development and validation of a breeder-friendly KASPar marker for wheat leaf rust resistance locus Lr21. Molecular Breeding, 31, 233-237.

Ni D A, Sozzani R, Blanchet S, Domenichini S, Reuzeau C, Cella R, Bergounioux C, Raynaud C. 2009. The Arabidopsis MCM2 gene is essential to embryo development and its over-expression alters root meristem function. New Phytologist, 184, 311-322.

Nisa M, Eekhout T, Bergis C, Pedroza-Garcia J A, He X, Mazubert C, Vercauteren I, Cools T, Brik-Chaouche R, Drouin-Wahbi J, Chmaiss L, Latrasse D, Bergounioux C, Vandepoele K, Benhamed M, De Veylder L, Raynaud C. 2023. Distinctive and complementary roles of E2F transcription factors during plant replication stress responses. Molecular Plant, 16, 1269-1282.

Omidbakhshfard M A, Fujikura U, Olas J J, Xue G P, Balazadeh S, Mueller-Roeber B. 2018. GROWTH-REGULATING FACTOR 9 negatively regulates Arabidopsis leaf growth by controlling ORG3 and restricting cell proliferation in leaf primordia. PLoS Genetics, 14, e1007484.

Omidbakhshfard M A, Proost S, Fujikura U, Mueller-Roeber B. 2015. Growth-Regulating Factors (GRFs): A Small Transcription Factor Family with Important Functions in Plant Biology. Molecular Plant, 8, 998-1010.

Ramirez-Parra E, Fründt C, Gutierrez C. 2003. A genome-wide identification of E2F-regulated genes in Arabidopsis. Plant Journal, 33, 801-811.

Ratnayeke N, Baris Y, Chung M, Yeeles J T P, Meyer T. 2023. CDT1 inhibits CMG helicase in early S phase to separate origin licensing from DNA synthesis. Molecular Cell, 83, 26-42.e13.

Reddy G V, Heisler M G, Ehrhardt D W, Meyerowitz E M. 2004. Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana. Development, 131, 4225-4237.

Shi J, Zhang Q, Yan X, Zhang D, Zhou Q, Shen Y, Anupol N, Wang X, Bao M, Larkin R M, Luo H, Ning G. 2021. A conservative pathway for coordination of cell wall biosynthesis and cell cycle progression in plants. Plant Journal, 106, 630-648.

Springer P S, Holding D R, Groover A, Yordan C, Martienssen R A. 2000. The essential Mcm7 protein PROLIFERA is localized to the nucleus of dividing cells during the G(1) phase and is required maternally for early Arabidopsis development. Development, 127, 1815-1822.

Sun X, Li X, Lu Y, Wang S, Zhang X, Zhang K, Su X, Liu M, Feng D, Luo S, Gu A, Fu Y, Chen X, Xuan S, Wang Y, Xu D, Chen S, Ma W, Shen S, Cheng F, Zhao J. 2022. Construction of a high-density mutant population of Chinese cabbage facilitates the genetic dissection of agronomic traits. Molecular Plant, 15, 913-924.

Trimarchi J M, Lees J A. 2002. Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol, 3, 11-20.

Tsukaya H. 2015. Yield increase: GRFs provide the key. Nature Plants, 2, 15210.

Vandepoele K, Vlieghe K, Florquin K, Hennig L, Beemster G T, Gruissem W, Van de Peer Y, Inze D, De Veylder L. 2005. Genome-wide identification of potential plant E2F target genes. Plant Physiology, 139, 316-328.

Vlieghe K, Boudolf V, Beemster G T, Maes S, Magyar Z, Atanassova A, de Almeida Engler J, De Groodt R, Inze D, De Veylder L. 2005. The DP-E2F-like gene DEL1 controls the endocycle in Arabidopsis thaliana. Current Biology, 15, 59-63.

Vlieghe K, Vuylsteke M, Florquin K, Rombauts S, Maes S, Ormenese S, Van Hummelen P, Van de Peer Y, Inze D, De Veylder L. 2003. Microarray analysis of E2Fa-DPa-overexpressing plants uncovers a cross-talking genetic network between DNA replication and nitrogen assimilation. Journal of Cell Science, 116, 4249-4259.

Wang B, Zhou X, Xu F, Gao J. 2010. Ectopic expression of a Chinese cabbage BrARGOS gene in Arabidopsis increases organ size. Transgenic Research, 19, 461-472.

Wang F, Zheng T, Wu G, Lang C, Hu Z, Shi J, Jin W, Chen J, Liu R. 2015. Overexpression of miR319a Affects the Balance Between Mitosis and Endoreduplication in Arabidopsis Leaves. Plant Molecular Biology Reporter, 33, 2006-2013.

Wang G, Kong H, Sun Y, Zhang X, Zhang W, Altman N, DePamphilis C W, Ma H. 2004. Genome-wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins. Plant Physiology, 135, 1084-1099.

Wang J, Jin D, Deng Z, Zheng L, Guo P, Ji Y, Song Z, Zeng H Y, Kinoshita T, Liao Z, Chen H, Deng X W, Wei N. 2025. The apoplastic pH is a key determinant in the hypocotyl growth response to auxin dosage and light. Nature Plants, 11, 279-294.

Wang Y, Huang S, Liu Z, Tang X, Feng H. 2018. Changes in endogenous phytohormones regulated by microRNA-target mRNAs contribute to the development of Dwarf Autotetraploid Chinese Cabbage (Brassica rapa L. ssp. pekinensis). Molecular Genetics and Genomics, 293, 1535-1546.

Xu H, Lantzouni O, Bruggink T, Benjamins R, Lanfermeijer F, Denby K, Schwechheimer C, Bassel G W. 2020. A Molecular Signal Integration Network Underpinning Arabidopsis Seed Germination. Current Biology, 30, 3703-3712.e3704.

Zhang G, Zhai N, Zhu M, Zheng K, Sang Y, Li X, Xu L. 2025. Cell wall remodeling during plant regeneration. Journal of Integrative Plant Biology, 67, 1060-1076.

Zhou X, Li Q, Chen X, Liu J, Zhang Q, Liu Y, Liu K, Xu J. 2011. The Arabidopsis RETARDED ROOT GROWTH gene encodes a mitochondria-localized protein that is required for cell division in the root meristem. Plant Physiology, 157, 1793-1804.

No related articles found!
No Suggested Reading articles found!