Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
An On-site Visual Assay Detecting Langya Henipavirus Based on Recombinase Polymerase Amplification Technology

Lin Cheng1,2*, Haili Zhang3*, Xiaoai Zhang4*, Pei Huang3, Xinlan Chen1,2, Fangxu Li1, Wujian Li5,6,7, Wei Liu4#, Hualei Wang3#, Sandra Chiu5,6,7#, Zengguo Cao1#

1 CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China

2 University of Chinese Academy of Sciences, Beijing 100190, China

3 State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China

4 Beijing Institute of Microbiology and Epidemiology, Beijing 100101, China

5 Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China.

6 Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.

7 Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei 230026, China.

 Highlights 

A visual assay of LayV nucleic acids was developed based on recombinase polymerase amplification technology, combined with immunochromatographic test device.

The detection limit of our assay reaches 1.22 copies/μL, with no observed cross-reactivity with other henipaviruses.

This assay is well-suited for requirements of point-of-care and field detection and has the potential for broader application.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

琅琊病毒(Langya henipavirus, LayV)是一种新发的、人兽共患亨尼帕病毒。副粘病毒科亨尼帕病毒属成员均具有极高的致病性,感染人和动物后可引起严重疾病,如同为亨尼帕病毒属的亨德拉病毒(Hendra virus, HeV)和尼帕病毒(Nipah virus, NiV)均可引起人类的高致死性疾病。为实现对LayV的高效、快速检测,本研究根据LayV核蛋白基因的保守序列,分别对基于重组酶聚合酶扩增原理设计引物和探针进行特异性生物标记并结合一次性核酸可视化检测装置,建立了一种针对LayV的现场可视化检测方法将携带LayV核蛋白基因质粒梯度稀释后,作为评价方法的阳性模板,使用本研究建立的方法进行扩增,结果显示该方法的灵敏度可达1.22 copies/μL使用HeVNiV、仙台病毒(Sendai virus, SeV)的RNA作为扩增模板,评价该方法的特异性,结果显示,该方法对上述病毒无交叉反应,具有较好的特异性。此外,将在LayV感染的细胞和鼩鼱组织样品中提取的病毒RNA作为检测对象,分别使用建立的RT-qPCR方法和可视化检测方法进行检测,结果显示,两种方法的检测结果一致。但由于本研究建立的可视化检测方法无需特殊的仪器,且更易操作,因此更具实用性。同时开展双盲试验,使用本研究建立的可视化检测方法对LayV阳性和阴性的鼩鼱组织进行检测,并平行进行RT-qPCR方法检测,结果显示,可视化检测结果与RT-qPCR检测结果吻合的同时,与阳性和阴性样品的实际结果一致,证明本研究建立的可视化检测方法可以完成临床样品的检测。综上所述,上述检测方法具有操作简便、灵敏度高、特异性强等优势,作为检测LayV的可靠方法,具有较大的应用潜力,尤其适用于需要“现地快检”的应用场景



Online: 08 December 2025  
Fund: 

This work was supported by the National Key Research and Development Program of China (grant no. 2021YFF0703600).

About author:  #Correspondence Hualei Wang, E-mail: wanghualei@jlu.edu.cn; Wei Liu, E-mail: lwbime@163.com; Sandra Chiu, E-mail: qiux@ustc.edu.cn; Zengguo Cao, E-mail: caozg@wh.iov.cn *These authors contributed equally to this work

Cite this article: 

Lin Cheng, Haili Zhang, Xiaoai Zhang, Pei Huang, Xinlan Chen, Fangxu Li, Wujian Li, Wei Liu, Hualei Wang, Sandra Chiu, Zengguo Cao. 2025. An On-site Visual Assay Detecting Langya Henipavirus Based on Recombinase Polymerase Amplification Technology. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.12.008

Basler C F. 2012. Nipah and hendra virus interactions with the innate immune system. Current Topics in Microbiology and Immunology, 359, 123–152.

Cao Z, Wang H, Wang L, Li L, Jin H, Xu C, Feng N, Wang J, Li Q, Zhao Y, Wang T, Gao Y, Lu Y, Yang S, Xia X. 2016. Visual Detection of West Nile Virus Using Reverse Transcription Loop-Mediated Isothermal Amplification Combined with a Vertical Flow Visualization Strip. Frontiers in Microbiology, 7, 554.

Field H E. 2016. Hendra virus ecology and transmission. Current Opinion in Virology, 16, 120–125.

He W, Ma T, Wang Y, Han W, Liu J, Lei W, Zhang L, Wu G. 2024. Development and evaluation of a quadruple real-time fluorescence-based quantitative reverse transcription polymerase chain reaction assay for detecting Langya, Mojiang, Nipah, and Cedar viruses. Biosafety and Health, 6, 80–87.

Jin K, Huang P, Li B, Cao Z, Huang Z, Zhang Z, Liu M, Li H, Niu L, Zhang T, Li Y, Li X, Wang H, Zhang H. 2024. A Single-Copy Sensitive and Field-Deployable One-Pot RT-RPA CRISPR/Cas12a Assay for the Specific Visual Detection of the Nipah Virus. Transboundary and Emerging Diseases, 2024, 4118007.

Lai M Y, Ooi C H, Lau Y L. 2018. Recombinase Polymerase Amplification Combined with a Lateral Flow Strip for the Detection of Plasmodium knowlesi. American Journal of Tropical Medicine and Hygiene, 98, 700–703.

Singh R K, Dhama K, Chakraborty S, Tiwari R, Natesan S, Khandia R, Munjal A, Vora K S, Latheef S K, Karthik K, Singh Malik Y, Singh R, Chaicumpa W, Mourya D T. 2019. Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies - a comprehensive review. Veterinary Quarterly, 39, 26–55.

Uwishema O, Shariff S, Rai A, Arab S, Nicholas A, Uweis L, Abbass M, El Saleh R, Adanur I, Wellington J. 2023. Is the New Langya virus in China a threat to global health? A short communication. Annals of Medicine And Surgery, 85, 1348–1351.

Wu X, Xiang R, Yang D, He X, Zhu L, Sun F, Li H, Pi N, Li Y. 2024. HRP-integrated CRISPR-Cas12a biosensor for rapid point-of-care detection of Langya henipavirus. iScience, 27, 111466.

Zhang X A, Li H, Jiang F C, Zhu F, Zhang Y F, Chen J J, Tan C W, Anderson D E, Fan H, Dong L Y, Li C, Zhang P H, Li Y, Ding H, Fang L Q, Wang L F, Liu W. 2022. A Zoonotic Henipavirus in Febrile Patients in China. New England Journal of Medicine, 387, 470–472.

No related articles found!
No Suggested Reading articles found!