Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
One-step generation of sh2isu1 sweet maize via CRISPR/Cas9 cytosine base editor (CBE)

Lu Zhang*, Yao Wang*, Mengyuan Liu*, Ziheng Song, Xiaoxu Li, Yue Fu, Panchao Wang, Ya Liu#, Ronghuan Wang#, Jiuran Zhao#

Institute of Maize, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

 Highlights 

1. This study represents the first report of the precise generation of sh2isu1 compound sweet maize germplasm utilizing the CRISPR/Cas9 cytosine base editing system in the maternal inbred line of a dominant Chinese maize variety.

2. By employing gene editing technology, we successfully and efficiently generated high-quality sweet maize target germplasm with precision and isolated the homozygous sh2isu1 mutant devoid of transgenic elements within a timeframe of 1 to 2 years.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

甜玉米蕴藏着丰沛的多糖、膳食纤维、微量元素、维生素与亚油酸等多种生命必需的营养成分,不仅口感清甜宜人,更集卓越的营养价值与广阔的经济前景于一身。然而,当前绝大多数品种仍根植于传统玉米种质资源之中,在通过回交手段将隐性突变等位基因导入现代优良受体基因型的过程中,往往难以摆脱“连锁累赘”这一遗传顽疾的羁绊,导致育种周期漫长、人力物力耗费巨大。为突破复合型甜玉米种质创新的瓶颈,亟需引入更为精准高效的突变创制技术。本研究巧妙运用CRISPR/Cas9胞嘧啶碱基编辑系统,精准靶向中国主推玉米品种京科968的母本自交系——京724中的Sh2Su1关键基因,成功创制出sh2isu1双突变复合甜玉米新种质,其优异特性可直接服务于高端特色玉米育种体系。研究结果充分彰显,基因编辑技术正以其无与伦比的效率,成为推动各类特色玉米品种快速迭代的核心引擎,极大拓展遗传背景选择的自由度与可能性。在理想遗传骨架基础上实施定向编辑,仅需12年即可获得表型优良、性状稳定且完全不含外源转基因成分的新型种质材料。借助这一前沿技术,多重优质基因得以高效聚合,从而孕育出一系列兼具特殊营养功能与鲜食美味的新一代玉米品种,能为构建满足多元化市场需求的高品质鲜食玉米种质资源体系开辟崭新的通途。



Online: 21 November 2025  
Fund: 

This work was supported by Youth Research Foundation of Beijing Academy of Agriculture and Forestry Sciences, China (QNJJ202420), the Beijing Science and Technology Association youth lifting project, and Beijing Municipal Rural Revitalization Agricultural Science and Technology Development Project (NY2401020224).

About author:  Lu Zhang, E-mail: zhanglu@maizedna.org; Yao Wang, E-mail: wangyao897@maizedna.org; Mengyuan Liu, E-mail: myliu0518@163.com; #Correspondence Ya Liu, E-mail: liuya@maizedna.org; Ronghuan Wang, E-mail: ronghuanwang@126.com; Jiuran Zhao, E-mail: maizezhao@126.com * These authors contributed equally to this work.

Cite this article: 

Lu Zhang, Yao Wang, Mengyuan Liu, Ziheng Song, Xiaoxu Li, Yue Fu, Panchao Wang, Ya Liu, Ronghuan Wang, Jiuran Zhao. 2025. One-step generation of sh2isu1 sweet maize via CRISPR/Cas9 cytosine base editor (CBE). Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.11.031

Boyer C, Shannon J. 1984. The use of endosperm genes for sweet corn improvement. Plant Breeding Review, 1, 139161.

Cui Y, Cao Q, Li Y, He M, Liu X. 2023. Advances in cis-element- and natural variationmediated transcriptional regulation and applications in gene editing of major crops. Journal of Experimental Botany, 74, 5441–5457.

Dodson-Swenson H G, Tracy W F. 2015. Endosperm carbohydrate composition and kernel characteristics of shrunken2-intermediate (sh2-i/sh2-i Su1/Su1) and shrunken2-intermediate- sugary1-reference (sh2-i/sh2-i su1-r/su1-r) in sweet corn. Crop Science, 55, 2647–2656.

Lal S, Choi J H, Curtis Hannah L. 1999. The AG dinucleotide terminating introns is important but not always required for pre-mRNA splicing in the maize endosperm. Plant Physiology, 120, 65–72.

Li B, Sun C, Li J, Gao C. 2024. Targeted genome-modification tools and their advanced applications in crop breeding. Nature Reviews Genetics, 25, 603–622.

Li C, Huang Y, Huang R, Wu Y, Wang W. 2018. The genetic architecture of amylose biosynthesis in maize kernel. Plant Biotechnology Jourrnal, 16, 688–695.

Li C, Liu C, Qi X, Wu Y, Fei X, Mao L, Cheng B, Li X, Xie C. 2017. RNAguided Cas9 as an in vivo desired-target mutator in maize. Plant Biotechnology Journal, 15, 1566–1576.

Neuffer M G. 1996. An allele of sh2. Maize Genetics Cooperation Newsletter, 70, 18.

Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, Mochizuki M, Miyabe A, Araki M, Hara K Y, Shimatani Z, Kondo A. 2016. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science, 353, aaf8729.

Rees H A, Liu D R. 2018. Base editing: precision chemistry on the genome and transcriptome of living cells. Nature Reviews Genetics, 19, 770–788.

Ren Q, Sretenovic S, Liu G, Zhong Z, Wang J, Huang L, Tang X, Guo Y, Liu L, Wu Y, Zhou J, Zhao Y, Yang H, He Y, Liu S, Yin D, Mayorga R, Zheng X, Zhang T, Qi Y, Zhang Y. 2021. Improved plant cytosine base editors with high editing activity, purity, and specificity. Plant Biotechnology Journal, 19, 2052-2068.

Revilla P, Anibas C M, Tracy W F. 2021. Sweet corn research around the world 2015–2020. Agronomy, 11, 534.

Shuler S L, Boehlein S K, Hannah L C, Tracy W F. 2017. Endosperm carbohydrates and debranching enzyme activity in five native sugary1 alleles in Maize. Crop Science, 57, 3068–3074.

Xu W, Song W, Yang Y, Wu Y, Lv X, Yuan S, Liu Y, Yang J. 2019. Multiplex nucleotide editing by high-fidelity Cas9 variants with improved efficiency in rice. BMC Plant Biology, 19, 511.

No related articles found!
No Suggested Reading articles found!