Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Rapid and ultrasensitive point-of-care detection of ASFV antibodies using p30-Fc-labeled nanoparticle-based fluorescence strip-assisted portable immunosensor

Yang Yang1, Jiayang Zheng1, Yan Zhang1, Qianming Zhao1, Yafang Lin1,2, Junjie Zhang1, Zongjie Li1, Ke Liu1, Beibei Li1, Donghua Shao1, Yafeng Qiu1, Zhiyong Ma1#, Jianchao Wei1#

1 Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China

2 Key Laboratory of Animal Microbiology of Chinas Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.

 Highlights 

1. A portable immunosensor device assisted by p30-Fc-labeled nanoparticle-based fluorescence strips was developed for the rapid detection of ASFV antibodies in the field.

2. The fluorescent test strip prepared in this study has the advantages of low cost, high specificity and sensitivity, good repeatability and stability.

3. The fluorescent test strip detection method in this study has extremely high sensitivity and antibodies can be detected four days after ASFV infection, which has high potential application value in the monitoring and control of African swine fever.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

非洲猪瘟(ASF)是由非洲猪瘟病毒(ASFV)引起的可感染家猪与野猪一种急性、高致病性、高度接触性传染病。迄今为止,自非洲猪瘟首次报告以来,无商品化安全疫苗或特效治疗药物和方法。因此,迫切需要一种快速简便的诊断方法来监测非洲猪瘟病毒特异性抗体,以控制非洲猪瘟病毒的传播。本研究以ASFV结构蛋白p30IgG Fc融合蛋白(p30-Fc)为抗原,结合荧光微球作为示踪剂,制备SPA双夹心荧光试纸条特异性检测抗ASFV抗体。结果表明,本研究制备的荧光试纸条对ASFV抗体具有较高的敏感性,灵敏度1:2560,具有较高的特异性,与其他猪病毒抗体无交叉反应。同时,荧光条检测结果与市售ELISA试剂盒符合率较高(98%)。并且,其抗体最早可在ASFV感染后4天检测到,因此使该检测方法可作为早期诊断手段。此外,荧光试纸条的检测结果可通过一种廉价且易获得的便携式设备读取。因此,本研究所提出的荧光试纸条是一种快速、灵敏、特异且可视化的检测方法,在未来的ASF疫情监测与防控中具有巨大潜力。



Online: 15 November 2025  
Fund: 

The work was supported by grants from the Shanghai Agriculture Applied Technology Development Program, China (X2024-02-08-00-12-F00049 awarded to Y.Q.), the Central Public-interest Scientific Institution Basal Research Fund (CAAS-ZDRW202409 awarded to JW), the Agricultural Science and Technology Innovation Program (CAAS-ZDRW202203 awarded to ZM), and Nanjing Customs Science and Technology Program of China (2023KJ24, awarded to JW).

About author:  Yang Yang, E-mail: 157766239162@163.com; #Correspondence Jianchao Wei, Tel: +86-21-34510616, Fax: +86-21-54081818, E-mail: jianchaowei@shvri.ac.cn; Zhiyong Ma, Tel: +86-21-34293139, Fax: +86-21-54081818, E-mail: zhiyongma@shvri.ac.cn

Cite this article: 

Yang Yang, Jiayang Zheng, Yan Zhang, Qianming Zhao, Yafang Lin, Junjie Zhang, Zongjie Li, Ke Liu, Beibei Li, Donghua Shao, Yafeng Qiu, Zhiyong Ma, Jianchao Wei. 2025. Rapid and ultrasensitive point-of-care detection of ASFV antibodies using p30-Fc-labeled nanoparticle-based fluorescence strip-assisted portable immunosensor. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.11.028

DI NARDO F, CHIARELLO M, CAVALERA S, BAGGIANI C, & ANFOSSI L. 2021. Ten Years of Lateral Flow Immunoassay Technique Applications: Trends, Challenges and Future Perspectives. Sensors (Basel), 21.

DIGIARO M, ELBEAINO T, KUBOTA K, OCHOA-CORONA F M, & VON BARGEN S. 2024. ICTV Virus Taxonomy Profile: Fimoviridae 2024. J Gen Virol, 105.

DIXON L K, STAHL K, JORI F, VIAL L, & PFEIFFER D U. 2020. African Swine Fever Epidemiology and Control. Annu Rev Anim Biosci, 8, 221-246.

GONG L, ZHANG Y, WANG L, ZHAO X, WANG L, QIU X, YANG X, ZHU W, LV L, KANG Y, WU Y, ZHANG A, DU Y, WANG X, ZHANG G, SUN A, & ZHUANG G. 2024. Advancing vaccine development: Evaluation of a mannose-modified lipid nanoparticle-based candidate for African swine fever p30 mRNA vaccine eliciting robust immune response in mice. Int J Biol Macromol, 270, 132432.

HANG VU T T, LE V P, JEONG D G, YEOM M, OH J, KANG B, PARK S K, & SONG D. 2023. Establishment of a p30-based lateral flow assay for African swine fever virus detection. J Virol Methods, 322, 114823.

KAZAKOVA A S, IMATDINOV I R, DUBROVSKAYA O A, IMATDINOV A R, SIDLIK M V, BALYSHEV V M, KRASOCHKO P A, & SEREDA A D. 2017. Recombinant Protein p30 for Serological Diagnosis of African Swine Fever by Immunoblotting Assay. Transbound Emerg Dis, 64, 1479-1492.

LIU H C, LIU R C, HU M R, YANG A B, WU R H, CHEN Y, ZHANG J, BAI J S, WU S B, CHEN J P, LONG Y F, JIANG Y, & ZHOU B. 2024. Development of high-concentration labeled colloidal gold immunochromatographic test strips for detecting african swine fever virus p30 protein antibodies. Heliyon, 10, e25214.

NOLL J C G, RANI R, BUTT S L, FERNANDES M H V, DO NASCIMENTO G M, MARTINS M, CASERTA L C, COVALEDA L, & DIEL D G. 2024. Identification of an Immunodominant B-Cell Epitope in African Swine Fever Virus p30 Protein and Evidence of p30 Antibody-Mediated Antibody Dependent Cellular Cytotoxicity. Viruses, 16.

SUN E, HUANG L, ZHANG X, ZHANG J, SHEN D, ZHANG Z, WANG Z, HUO H, WANG W, HUANGFU H, WANG W, LI F, LIU R, SUN J, TIAN Z, XIA W, GUAN Y, HE X, ZHU Y, ZHAO D, & BU Z. 2021. Genotype I African swine fever viruses emerged in domestic pigs in China and caused chronic infection. Emerg Microbes Infect, 10, 2183-2193.

TEKLUE T, SUN Y, ABID M, LUO Y, & QIU H J. 2020. Current status and evolving approaches to African swine fever vaccine development. Transbound Emerg Dis, 67, 529-542.

WU P, LOWE A D, RODRIGUEZ Y Y, MURGIA M V, DODD K A, ROWLAND R R, & JIA W. 2020. Antigenic regions of African swine fever virus phosphoprotein P30. Transbound Emerg Dis, 67, 1942-1953.

ZHONG K, ZHU M, YUAN Q, DENG Z, FENG S, LIU D, & YUAN X. 2021. Development of an Indirect ELISA to Detect African Swine Fever Virus pp62 Protein-Specific Antibodies. Front Vet Sci, 8, 798559.

No related articles found!
No Suggested Reading articles found!