Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Analysis of the characteristics of walnut cultivars and construction of the suitability evaluation model for soluble proteins processing

Shanshan Li1, Xue Hei1, Shinuo Cao1, Jing Zhou4, Chao Wu1, Qizhai Li4, Yonghao Chen5, Bo Jiao1, Benu Adhikari3, Aimin Shi1, Xiaojie Ma1#, Qiang Wang1, 2#

1 Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China

2 College of Food Science and Pharmacy, Xinjiang Agricultural University, ürümqi 830052, China 

3 College of Science, RMIT University, Melbourne, VIC 3083, Australia

4 State Key Laboratory of Mathematical Sciences Academy of Mathematics and Systems Science, CAS, and University of Chinese Academy of Sciences, Beijing, China

5 Beijing Academy of Forestry and Pomology Sciences, Jia No.12 Xiangshan Ruiwangfen, Haidian District, Beijing 100093, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

为筛选适合可溶性蛋白加工的核桃品种并提升核桃蛋白加工效率,本研究以我国新疆、辽宁、云南等8个主产省份的36个核桃品种为研究对象,综合分析其表观特性、营养成分、加工特性及蛋白理化性质,并构建核桃蛋白溶解度预测模型。研究采用系统聚类分析(SCA)对36个核桃品种进行分类,通过多元线性回归(MLR)构建蛋白溶解度评价模型,同时测定核桃的纵径、单果重、水分、粗脂肪、粗蛋白等8项基础指标,以及蛋白纯度、溶解度、氨基酸组成、分子量分布等蛋白理化指标。结果显示,36个核桃品种在基础特性与蛋白理化性质上差异显著:核桃出仁率为43%-65%,粗蛋白含量集中在16%-18%,蛋白溶解度为11%-34%;核桃蛋白主要氨基酸为谷氨酸(Glu)、精氨酸(Arg)和天冬氨酸(Asp),低分子量亚基(<19 kDa20-25 kDa)占比高于高分子量亚基(32-40 kDa45-66 kDa)。聚类分析将品种划分为3类,其中温185和新光品种表现最优,蛋白纯度分别达64.42%70.57%,溶解度分别为27.04%30.04%,是可溶性蛋白提取加工的适宜品种。进一步通过相关性分析发现,谷氨酸r=-0.64)、精氨酸r=-0.57)与蛋白溶解度呈显著负相关,赖氨酸(Lys)呈正相关(r=0.35);基于精氨酸、谷氨酸、苏氨酸、赖氨酸、组氨酸及粗脂肪6个关键指标构建的多元线性回归模型,预测值与实测值的0.832,预测精度较高。本研究系统探究了不同核桃品种的蛋白溶解度与与其内在理化特性的关系,所建模型通过测定核桃原料的氨基酸与粗脂肪含量预测蛋白溶解度,解决了传统方法操作繁琐的问题。研究不仅为食品工业筛选可溶性蛋白加工专用核桃品种提供了可靠方法,也为不同核桃品种的精准加工利用及核桃产业价值提升奠定了理论基础。



Abstract  

Thirty-six walnut cultivars were analyzed for apparent, nutritional, processing and protein properties. Systematic cluster analysis (SCA) was applied to classify 36 walnut cultivars, while multivariate linear regression (MLR) analysis was used to develop a model for evaluating walnut protein solubility. The walnut cultivars were classified into three distinct clusters. Wen 185 and Xinguang had protein purity of 64.42, 70.57, and solubility of 27.04, 30.04%, respectively. Wen 185 and Xinguang were identified as the more suitable cultivars for extracting and processing soluble proteins. The MLR model revealed critical factors influencing protein solubility, such as arginine (Arg), glutamic acid (Glu), threonine (Thr), lysine (Lys), histidine (His), and crude fat. Glu (r=-0.64) and Arg (r=-0.57) showed a significant negative correlation with solubility. With a R2 of 0.832 between predicted and experimental values, the model was validated. This study has improved the efficiency of walnut protein during the processing and pointed out the direction for the processing and utilization of different cultivars of walnuts.

Keywords:  cultivars classification       walnut protein       processing characteristics       solubility model  
Online: 01 November 2025  
Fund: 

This work was supported by Key Research and Development Program of Xinjiang Uygur Autonomous Region (2022B02048), the Bingtuan Science and Technology Program (2023AB002) and Agricultural Science and Technology Innovation Project (CAAS-ASTIP-2023-IFST).

Cite this article: 

Shanshan Li, Xue Hei, Shinuo Cao, Jing Zhou, Chao Wu, Qizhai Li, Yonghao Chen, Bo Jiao, Benu Adhikari, Aimin Shi, Xiaojie Ma, Qiang Wang. 2025. Analysis of the characteristics of walnut cultivars and construction of the suitability evaluation model for soluble proteins processing. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.10.023

Amin F, Masoodi F A, Baba W N, Khan A A, Ganie B A. 2017. Effect of different ripening stages on walnut kernel quality: antioxidant activities, lipid characterization and antibacterial properties. Journal of Food Science and Technology, 54, 3791-3801.

AOAC International Bylaws. 1995. Journal of AOAC International, 78, 225-232.

Beenu T, Rajni M, Ankit G. 2021. Nutritional and phytochemical composition of pecan nut and its hypocholesterolemic effect in an animal model. British Food Journal, 123, 1433-1448.

Chatrabnous N, Yazdani, N, Vahdati K. 2018. Determination of Nutritional Value and Oxidative Stability of Fresh Walnut. Directory of Open Access Journals, 540862, 11-20.

Chinese Standard. 2009. Quality grades of products for Carya cathayensis Sarg. GB/T 24307-2009. Beijing. Forestry Administration of the People’s Republic of China.

Christopoulos M V, Tsantili E. 2011. Effects of temperature and packaging atmosphere on total antioxidants and colour of walnut (Juglans regia L.) kernels during storage. Scientia Horticulturae, 131, 49-57.

Ellman, G 1959. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82, pp. 70-77.

FAO. 2023. Retrieved from https://www.fao.org/faostat/zh/#home. Accessed January, 2023. New York, USA.

Feng Y, Wang Z, Chen J, Li H, Wang Y, Ren D, Lu J. 2021. Separation, identification, and molecular docking of tyrosinase inhibitory peptides from the hydrolysates of defatted walnut (Juglans regia L.) meal. Food Chemistry, 353, 129471.

GB5009.124. 2016. National Food Safety Standard-Determination of Amino Acid in Foods Standard Press of China, Beijing.

Jahanbani R, Bahramnejad E, Rahimi N, Shafaroodi H, Sheibani N, Moosavi-Movahedi A A, Dehpour A R, Vahdati K. 2021. Anti-seizure effects of walnut peptides in mouse models of induced seizure: The involvement of GABA and nitric oxide pathways. Epilepsy Research, 176, 106727.

Jahanbani R, Ghaffari M, Vahdati K, Salami M, Khalesi M, Sheibani N, Moosavi-Movahedi A A. 2017. Kinetics study of protein hydrolysis and inhibition of angiotensin converting enzyme by peptides hydrolysate extracted from walnut. International Journal of Peptide Research and Therapeutics, 24, 77-85.

Jiao B, Shi A, Liu H, Sheng X, Liu L, Hu H, Adhikari B, Wang Q. 2018. Effect of electrostatically charged and neutral polysaccharides on the rheological characteristics of peanut protein isolate after high-pressure homogenization. Food Hydrocolloids, 77, 329-335.

Kong X, Huang Z, Zhang C, Hua Y, Chen Y, Li X. 2023. Phenolic compounds in walnut pellicle improve walnut protein solubility under pH-shifting condition. Food Research International, 163, 112156.

Kong X, Zhang L, Lu X, Zhang C, Hua Y, Chen Y. 2019. Effect of high-speed shearing treatment on dehulled walnut proteins. LWT-Food Science & Technology, 116, 108500.

Laemmli U. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, pp. 680-685.

Li Q, Mo R, Wang R, Ni Z, Zheng Y, Han Y, Wu S, Tang F, Yuan X, Liu Y. 2022. Characterization and assessment of chemical components in walnuts with various appearances. Journal of Food Composition and Analysis, 107, 104361.

Li S, Liu Z, Hei X, Wu C, Ma X, Hu H, Jiao B, Zhu J, Adhikari B, Wang Q, Shi A. 2023. Effect of Physical Modifications on Physicochemical and Functional Properties of Walnut Protein. Foods, 12, 3709.

Lowry O, Rosebrough N, Farr A, Randall R. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265-275.

Mao X, Hua Y, Chen G. 2014. Amino Acid Composition, Molecular Weight Distribution and Gel Electrophoresis of Walnut (Juglans regia L.) Proteins and Protein Fractionations. International Journal of Molecular Sciences, 15, 2003-2014.

Mousa K, Rezaei A, Hassani D, Saadat S, Kourosh V. 2020. Phenotypic Evaluation and Identification of Superior Persian Walnut (Juglans regia L.) Genotypes in Mazandaran Province, Iran. Journal of Nuts, 11, 315-326.

Okatan V, Gündeşli M A, Kafkas N E, Attar Ş H, Kahramanoğlu İ, Usanmaz S, Aşkın M. A. 2022. Phenolic Compounds, Antioxidant Activity, Fatty Acids and Volatile Profiles of 18 Different Walnut (Juglans regia L.) Cultivars and Genotypes. Applied Fruit Science Erwerbs-Obstbau, 64, 247-260.

Pakrah S, Rahemi M, Nabipour A, Zahedzadeh F, Kakavand F, Vahdati K. 2021. Sensory and nutritional attributes of Persian walnut kernel influenced by maturity stage, drying method, and cultivar. Journal of Food Processing and Preservation, 45, e15513.

Rashwan A K, Osman A I, Abdelshafy A M, Mo J L, Chen W. 2023. Plant-based proteins: advanced extraction technologies, interactions, physicochemical and functional properties, food and related applications, and health benefits. Critical Reviews in Food Science and Nutrition, 65, 667-694.

Rashwan A K, Osman A I, Wei C. 2023. Natural nutraceuticals for enhancing yogurt properties: a review. Environmental Chemistry Letters, 21. 1907-1931.

R Core Team. 2021. R: A Language and Environment for Statistical Computing (Online). Available: http://www.r-project.org (accessed February 10, 2023). R Foundation.

Riblett A L, Herald T J, Schmidt K A, Tilley K A. 2001. Characterization of beta-conglycinin and glycinin soy protein fractions from four selected soybean genotypes. Journal of Agricultural Food Chemistry, 49, 4983-4989.

Sarikhani S, Vahdati K, Ligterink W. 2021. Biochemical properties of superior persian walnut genotypes originated from southwest of iran. Journal of Horticultural Science, 8, 13-24.

SAS Institute Inc, 1990. SAS/STAT User’s Guide, vol. 6, 4th ed.; Cary, NC.

Scitovski R, Sabo K, Martínez–Álvarez F, Ungar Š. 2021. Cluster Analysis and Applications. Springerhttps://link.springer.com/book/10.1007/978-3-030-74552-3. 2024-11-20.

Szalóki-Dorkó L, Kumar P, Székely D, Végvári G, Ficzek G, Simon G, Abrankó L, Tormási J, Bujdosó G, Máté M. 2024. Comparative Study of Different Walnut (Juglans regia L.) Varieties Based on Their Nutritional Values. Plants, 13, 2097.

Tsumura K, Saito T, Tsuge K, Ashida H, Kugimiya W, Inouye K. 2005. Functional properties of soy protein hydrolysates obtained by selective proteolysis. LWT-Food Science & Technology, 38. 255-261.

Vahdati K. 2014. Traditions and folks for walnut growing around the silk road. Acta Horticulturae,1032, 19-24.

Wall J. 2022. The Cultural Value of Trees: Folk Value and Biocultural Conservation (1st ed.). Routledge.

Wang L, Liu H, Liu L, Wang Q, Li S, Li Q. 2017. Prediction of peanut protein solubility based on the evaluation model established by supervised principal component regression. Food Chemistry, 218, 553-560.

Wang P, Zhong L, Yang H, Zhu F, Hou X, Wu C, Zhang R, Cheng Y. 2021. Comparative analysis of antioxidant activities between dried and fresh walnut kernels by metabolomic approaches. LWT-Food Science & Technology, 155, 112875.

Wei F, Chen Q, Du Y, Han C, Fu M, Jiang H, Chen X. 2020. Effects of hulling methods on the odor, taste, nutritional compounds, and antioxidant activity of walnut fruit. LWT-Food Science & Technology, 120, 108938.

Yu H, Liu H, Erasmus S W, Zhao S, Wang Q, van Ruth S M. (2020). Rapid high-throughput determination of major components and amino acids in a single peanut kernel based on portable near-infrared spectroscopy combined with chemometrics. Industrial Crops and Products, 158, 112956.

Zhang Y, Tian Z, Ma W, Zhang M, Yang L. 2022. Hyperspectral detection of walnut protein contents based on improved whale optimized algorithm. International Journal of Agricultural and Biological Engineering, 15, 235-241.

Zhao Y, He W, Zhao S, Jiao T, Hu H, Li J, Zhang L, Zang J. 2023. Advanced Insights into Walnut Protein: Structure, Physiochemical Properties and Applications. Foods, 12, 3603.

Zhu Z, Zhu W, Yi J, Liu N, Cao Y, Lu J, Decker E, McClement D. 2018. Effects of sonication on the physicochemical and functional properties of walnut protein isolate. Food Research International, 106, 853-861.

[1] WANG Qiang, LIU Hong-zhi, SHI Ai-min, HU Hui, LIU Li, WANG Li, YU Hong-wei. Review on the processing characteristics of cereals and oilseeds and their processing suitability evaluation technology[J]. >Journal of Integrative Agriculture, 2017, 16(12): 2886-2897.
No Suggested Reading articles found!