Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Understanding cropland parcel change without producing cropland parcel maps: A novel structural change detection approach

Shiyao Li1, 2, Qiangyi Yu2, 3#, Yulin Duan2, Huibin Li2, Wenjuan Li2, Zhanli Sun3, Daniel Müller3, 4, 5, Baofeng Su1#, Wenbin Wu2

1 College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China

2 State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Agricultural Remote Sensing (AGRIRS), Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China

3 Leibniz Institute of Agricultural Development in Transition Economies (IAMO), Halle (Saale) 06120, Germany

4 Geography Department, Humboldt-Universität zu Berlin, Berlin 10099, Germany

5 Integrative Research Institute on Transformations of Human-Environment Systems (IRI THESys), Humboldt-Universität zu Berlin, Berlin 10099, Germany

 Highlights 

l The size, shape, and distribution of cropland parcels are key features of agricultural systems.

l Traditional schemes to obtain parcel change information requires wall-to-wall mapping.

l A new approach is proposed that can achieve the same purpose without mapping.

l Comparing the number of edge pixels enables efficient detection of changes in cropland parcels.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

耕地地块是农业生产的基本单元,其面积与形状可能因土地整治等人类活动的影响而发生变化。虽然遥感技术已广泛应用于耕地地块制图,但基于全域覆盖制图来检测地块变化,成本高、耗时长。为此,本文提出一种无需生成完整地块图的轻量化结构变化检测算法,以边缘像素数量作为地块结构变化的代理指标,快速判定是否发生变化及其空间位置。具体步骤包括:首先,应用Sobel算子从双时相影像中提取地块的总边缘像素;其次,采用连通区域标记法识别并剔除田间建筑、输电塔等造成的伪边缘;随后通过形态学膨胀与骨架提取进行拓扑优化,消除冗余边缘像素,保留地块的主要结构骨架;最后,通过统计并比较双时相影像中的边缘像素数量,判断地块是否发生变化。本文在东亚五个土地整治显著区域开展实验验证,结果表明该方法检测效果稳健准确率、精确率、召回率及F1分数均超过0.85。通过有效筛除冗余边缘像素,降低了噪声干扰,提升了检测效率和精度。该方法遥感中的语义变化检测拓展至结构变化检测,可在不生成完整耕地地块图的前提下快速、精准地识别耕地地块变化,为大尺度识别变化热点与土地整治项目监测提供新的技术路径。



Abstract  

Cropland parcels are the basic unit for agricultural production, and their size and shape may change due to human activities, e.g. land consolidation. Remote sensing has been increasingly used for mapping cropland parcel, yet detecting changes in cropland parcels by wall-to-wall mapping is time-consuming. This paper proposes a new algorithm to identify whether and where cropland parcel changes have been undertaken without generating complete parcel maps. We use the number of edge pixels derived from remote sensing imagery as a proxy indicator for cropland parcel changes. First, we apply a Sobel operator to delineate the total edge pixels of parcels from dual-time images. Second, we apply the connected-components labeling to remove pseudo-edges arising from non-cropland built structures and transmission towers. We then perform topological optimization, including morphological dilation and skeleton extraction, to eliminate redundant edge pixels for parcel structure. Finally, we detect whether parcel changes have been undertaken by counting and comparing the number of edge pixels derived from dual-time images. We applied this innovative framework in five regions in East Asia where land consolidation has significantly changed cropland parcels. Our method demonstrated robust detection results, with stable accuracy, precision, recall, and F1-score, all exceeding 0.85. Screening redundant edge pixels reduced noise and permitted efficient detection of changes in cropland parcels. Our method extends the traditional detection of semantic change to structural change and can quickly detect cropland parcel changes with high accuracy. This capability offers the potential to identify hotspot areas of cropland changes on a larger scale without the need to produce full cropland maps, which is particularly useful for monitoring land consolidation programs.

Keywords:  field boundary delineation       image segmentation        change detection        land consolidation        remote sensing  
Online: 27 October 2025  
Fund: 

This work was jointly supported by the National Key Research and Development Program of China (2022YFB3903505) and the Central Public-interest Scientific Institution Basal Research Fund, China (Y2025YC87). The Agricultural Land System group at AGRIRS and the Land Systems Group at IAMO provided valuable support throughout the research.

About author:  Shiyao Li, E-mail: shiyaoli@nwafu.edu.cn; #Correspondence Qiangyi Yu, E-mail: yuqiangyi@caas.cn; Baofeng Su, E-mail: bfs@nwsuaf.edu.cn

Cite this article: 

Shiyao Li, Qiangyi Yu, Yulin Duan, Huibin Li, Wenjuan Li, Zhanli Sun, Daniel Müller, Baofeng Su, Wenbin Wu. 2025. Understanding cropland parcel change without producing cropland parcel maps: A novel structural change detection approach. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.10.013

Abubakari Z, Van Der Molen P, Bennett R M, Kuusaana E D. 2016. Land consolidation, customary lands, and Ghana's Northern Savannah Ecological Zone: An evaluation of the possibilities and pitfalls. Land Use Policy, 54, 386-398.

Al-Amin A K M A, Lowenberg‑Deboer J, Franklin K, Behrendt K. 2023. Economics of field size and shape for autonomous crop machines. Precision Agriculture, 24, 1738-1765.

Alcantarilla P F, Stent S, Ros G, Arroyo R, Gherardi R. 2018. Street-view change detection with deconvolutional networks. Autonomous Robots, 42, 1301-1322.

Bey A, Jetimane J, Lisboa S N, Ribeiro N, Sitoe A, Meyfroidt P. 2020. Mapping smallholder and large-scale cropland dynamics with a flexible classification system and pixel-based composites in an emerging frontier of Mozambique. Remote Sensing of Environment, 239, 111611.

Chen W, Sui L C, Xu Z C, Lang Y. 2012. Improved Zhang-Suen thinning algorithm in binary line drawing applications. In: 2012 International Conference on Systems and Informatics (ICSAI 2012). IEEE, China. pp. 1947-1950.

Choi H I, Choi S W, Moon H P, Wee N S. 1997. New algorithm for medial axis transform of plane domain. Graphical Models and Image Processing, 59, 463-483.

Clough Y, Kirchweger S, Kantelhardt J. 2020. Field sizes and the future of farmland biodiversity in European landscapes. Conservation Letters, 13, e12752.

Du J N, Xu S C, Li J S, Duan J K, Xiao W. 2024. A novel approach for farmland size estimation in small-scale agriculture using edge counting and remote sensing. Remote Sensing, 16, 2981.

Duan J K, Ren C C, Wang S T, Zhang X M, Reis S, Xu J M, Gu B J. 2021. Consolidation of agricultural land can contribute to agricultural sustainability in China. Nature Food, 2, 1014-1022.

Feng W, Tian F P, Zhang Q, Zhang N, Wan L, Sun J Z. 2015. Fine-grained change detection of misaligned scenes with varied illuminations. In: 2015 IEEE International Conference on Computer Vision (ICCV 2015). IEEE, Chile. pp. 1260-1268.

Fritz S, See L, Mccallum I, You L Z, Bun A, Moltchanova E, Duerauer M, Albrecht F, Schill C, Perger C, Havlik P, Mosnier A, Thornton P, Wood-Sichra U, Herrero M, Becker-Reshef I, Justice C, Hansen M, Gong P, Aziz S A, et al. 2015. Mapping global cropland and field size. Global Change Biology, 21, 1980-1992.

Gao W L, Xie D Y. 2024. Pathways towards low-carbon sustainable agriculture: How farmland size affects net carbon emissions. Climate Policy, 24, 1-15.

Garcia-Pedrero A, Gonzalo-Martin C, Fonseca-Luengo D, Lillo-Saavedra M. 2015. A GEOBIA methodology for fragmented agricultural landscapes. Remote Sensing, 7, 767-787.

García-Pedrero A, Lillo-Saavedra M, Rodríguez-Esparragón D, Gonzalo-Martín C. 2019. Deep learning for automatic outlining agricultural parcels: Exploiting the land parcel identification system. IEEE Access, 7, 158223-158236.

Gónzalez X P, Marey M F, Álvarez C J. 2007. Evaluation of productive rural land patterns with joint regard to the size, shape and dispersion of plots. Agricultural Systems, 92, 52-62.

Graesser J, Ramankutty N. 2017. Detection of cropland field parcels from Landsat imagery. Remote Sensing of Environment, 201, 165-180.

Gu T C, Chen W X, Liang J L, Pan S P, Ye X Y. 2023. Identifying the driving forces of cultivated land fragmentation in China. Environmental Science and Pollution Research, 30, 105275-105292.

He L F, Ren X W, Gao Q H, Zhao X, Yao B, Chao Y Y. 2017. The connected-component labeling problem: A review of state-of-the-art algorithms. Pattern Recognition, 70, 25-43.

Hemond O, Butsic V, Moanga D, Wartenberg A C. 2023. Farm consolidation and turnover dynamics linked to increased crop diversity and higher agricultural input use. Agricultural Systems, 210, 103708.

Hendricks A, Lisec A. 2014. Land consolidation for large-scale infrastructure projects in Germany. Geodetski Vestnik, 58, 46-68.

Huang R, Wang R F, Zhang Y X, Xing Y, Fan W, Yung K L. 2022. Selecting change image for efficient change detection. IET Signal Processing, 16, 327-339.

Huang R, Zhou M, Zhao Q, Zou Y B. 2020. Change detection with absolute difference of multiscale deep features. Neurocomputing, 418, 102-113.

Hussain M, Chen D M, Cheng A, Wei H, Stanley D. 2013. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS Journal of Photogrammetry and Remote Sensing, 80, 91-106.

Jänicke C, Wesemeyer M, Chiarella C, Lakes T, Levers C, Meyfroidt P, Müller D, Pratzer M, Rufin P. 2024. Can we estimate farm size from field size? An empirical investigation of the field size to farm size relationship. Agricultural Systems, 220, 104088.

Janulevičius A, Šarauskis E, Čiplienė A, Juostas A. 2019. Estimation of farm tractor performance as a function of time efficiency during ploughing in fields of different sizes. Biosystems Engineering, 179, 80-93.

Jiang Y F, Tang Y T, Long H L, Deng W. 2022. Land consolidation: A comparative research between Europe and China. Land Use Policy, 112, 105790.

Kong W B, Chen J Z, Song Y B, Fang Z Q, Yang X F, Zhang H Y. 2023. Sobel edge detection algorithm with adaptive threshold based on improved genetic algorithm for image processing. International Journal of Advanced Computer Science and Applications, 14, 557-562.

Kwinta A, Gniadek J. 2017. The description of parcel geometry and its application in terms of land consolidation planning. Computers and Electronics in Agriculture, 136, 117-124.

Lam L, Lee S W, Suen C Y. 1992. Thinning methodologies-a comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 869–885.

Langeveld H, Röling N. 2006. Changing European Farming Systems for a Better Future: New Visions for Rural Areas. Wageningen Academic Publishers, Wageningen.

Lee T C, Kashyap R L, Chu C N. 1994. Building Skeleton Models via 3-D Medial Surface Axis Thinning Algorithms. CVGIP: Graphical Models and Image Processing, 56, 462-478.

Li M M, Lu C W, Lin M J, Xiu X L, Long J, Wang X Q. 2025. Extracting vectorized agricultural parcels from high-resolution satellite images using a Point-Line-Region interactive multitask model. Computers and Electronics in Agriculture, 231, 109953.

Liu S C, Marinelli D, Bruzzone L, Bovolo F. 2019. A review of change detection in multitemporal hyperspectral images: Current techniques, applications, and challenges. IEEE Geoscience and Remote Sensing Magazine, 7, 140-158.

Lowder S K, Sánchez M V, Bertini R. 2021. Which farms feed the world and has farmland become more concentrated? World Development, 142, 105455.

Meng X. 2018. Digital image processing technology based on MATLAB. In: Proceedings of the 4th International Conference on Virtual Reality (ICVR 2018). Association for Computing Machinery, Hong Kong. pp. 79-82.

Noack F, Larsen A, Kamp J, Levers C. 2022. A bird's eye view of farm size and biodiversity: The ecological legacy of the iron curtain. American Journal of Agricultural Economics, 104, 1460-1484.

Persello C, Tolpekin V A, Bergado J R, De By R A. 2019. Delineation of agricultural fields in smallholder farms from satellite images using fully convolutional networks and combinatorial grouping. Remote Sensing of Environment, 231, 111253.

Qian F K, Chi Y R, Lal R, Lorenz K. 2020. Spatio-temporal characteristics of cultivated land fragmentation in different landform areas with a case study in Northeast China. Ecosystem Health and Sustainability, 6, 12.

Qu Y D, Cui C S, Chen S B, Li J Q. 2005. A fast subpixel edge detection method using Sobel–Zernike moments operator. Image and Vision Computing, 23, 11-17.

Ranjan R, Avasthi V. 2023. Edge detection using guided Sobel image filtering. Wireless Personal Communications, 132, 651-677.

Rogers S, Wilmsen B, Han X, Wang Z J H, Duan Y F, He J, Li J, Lin W L, Wong C. 2021. Scaling up agriculture? The dynamics of land transfer in inland China. World Development, 146, 105563.

Rosenfeld A, Pfaltz J L. 1966. Sequential operations in digital picture processing. Journal of the ACM, 13, 471-494.

Rufin P, Wang S, Lisboa S N, Hemmerling J, Tulbure M G, Meyfroidt P. 2024. Taking it further: Leveraging pseudo-labels for field delineation across label-scarce smallholder regions. International Journal of Applied Earth Observation and Geoinformation, 134, 104149.

Shi W Z, Zhang M, Zhang R, Chen S X, Zhan Z. 2020. Change detection based on artificial intelligence: State-of-the-art and challenges. Remote Sensing, 12, 1688.

Singh A. 1989. Review article digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 10, 989-1003.

Al Smadi P T, Zoubi S. 2021. Modern technology for image processing and computer vision -A review. Journal of Advanced Sciences and Engineering Technologies, 1, 17-23.

Sobel I. 1978. Neighborhood coding of binary images for fast contour following and general binary array processing. Computer Graphics and Image Processing, 8, 127-135.

Sun H R, Wei Z J, Yu W G, Yang G X, She J N, Zheng H B, Jiang C Y, Yao X, Zhu Y, Cao W X, Cheng T, Ali I. 2025. SIDEST: A sample-free framework for crop field boundary delineation by integrating super-resolution image reconstruction and dual edge-corrected Segment Anything model. Computers and Electronics in Agriculture, 230, 109897.

Sun Z D, Zhong Y F, Wang X Y, Zhang L P. 2024. Identifying cropland non-agriculturalization with high representational consistency from bi-temporal high-resolution remote sensing images: From benchmark datasets to real-world application. ISPRS Journal of Photogrammetry and Remote Sensing, 212, 454-474.

Tong X, Ren A F, Zhang H F, Ruan H, Luo M. 2011. Edge detection based on genetic algorithm and sobel operator in image. In: International Conference on Graphic and Image Processing (ICGIP 2011). SPIE, Egypt. pp. 828572.

Walczyk R, Armitage A, Binnie D. 2010. Comparative study on connected component labeling algorithms for embedded video processing systems. In: International Conference on Image Processing, Computer Vision, & Pattern Recognition (IPCV 2010). CSREA, USA. pp. 853-859.

Wang S Y, Zhou Y N, Yang X Z, Feng L, Wu T J, Luo J C. 2023. BSNet: Boundary-semantic-fusion network for farmland parcel mapping in high-resolution satellite images. Computers and Electronics in Agriculture, 206, 107683.

Xu L, Ming D P, Du T Y, Chen Y Y, Dong D H, Zhou C H. 2022. Delineation of cultivated land parcels based on deep convolutional networks and geographical thematic scene division of remotely sensed images. Computers and Electronics in Agriculture, 192, 106611.

Xu Y Y, Zhu Z H, Guo M Q, Huang Y. 2024. Multiscale edge-guided network for accurate cultivated land parcel boundary extraction from remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 62, 1-20.

Yang Y B, Wilson L T, Wang J. 2014. Reconciling field size distributions of the US NASS (National Agricultural Statistics Service) cropland data. Computers and Electronics in Agriculture, 109, 232-246.

Yu Q Y, Hu Q, Wu H, Wu W B. 2025. View from above: Farmland infrastructure and its impacts on agricultural landscapes. The Innovation Geoscience, 3, 100107.

Zhang T Y, Suen C Y. 1984. A fast parallel algorithm for thinning digital patterns. Communications of the ACM, 27, 236-239.

Zhang Z X, Jiang H W, Pang S Y, Hu X Y. 2022. Review and prospect in change detection of multi-temporal remote sensing images. Acta Geodetica et Cartographica Sinica, 51, 1091-1107. (in Chinese)

No related articles found!
No Suggested Reading articles found!